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ABSTRACT 
Advances in medical technology have greatly increased 

information density for imaging studies. This may result 

from increased spatial resolution facilitating greater 

anatomical detail, increased contrast resolution allowing 

evaluation of more subtle structures than previously 

possible, or increased temporal image acquisition rate.  

However, such technological advances, while potentially 

improving the diagnostic benefits of a study, may result in 

―data overload‖ while processing this information. This 

often manifests as increased total study time, defined as the 

combination of acquisition, processing and interpretation 

times; even more critically, the vast increase in data does 

not always translate to improved diagnosis/treatment 

selection. This paper describes a related series of clinically 

motivated data mining products that extract the key, 

actionable information from the vast amount of imaging 

data in order to ensure an improvement in patient care (via 

more accurate/early diagnosis) and a simultaneous 

reduction in total study time. Several thousand units of the 

products described in this paper have been commercially 

deployed in hospitals around the world since 20041. 

While each application targets a specific clinical task, they 

share the common methodology of transforming raw 

imaging data, through knowledge-based data mining 

algorithms, into clinically relevant information. This 

enables users to spend less time interacting with an image 

volume to extract the clinical information it contains, while 

supporting improved diagnostic accuracy. Although image 

processing plays an equally critical role in these software, 

this paper focuses primarily on the data mining challenges 

involved in developing commercial products.  

General Terms 
Algorithms, Measurement, Performance, Experimentation. 
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1. INTRODUCTION 
 

The invention of the X-ray by William Röntgen in 1895 

(Stanton 1896) revolutionized medicine. Thanks to the 

science of in-vivo imaging, doctors were able to look inside 

a patient‘s body without resorting to dangerous procedures 

                                                                 

1 These products are commercially available from Siemens 

Medical Solutions USA, Inc. 

– the term ―exploratory surgery‖ has all but vanished from 

our lexicon today. 

The fundamental value of the X-ray remains the same 

today, as it was over 100 years ago – different structures 

(bone, cartilage, tissue, tumor, metal, etc.) can be identified 

based on their ability to block the X-ray/Röntgen beam. 

The initial uses of in-vivo imaging were to diagnose broken 

bones and locate foreign objects, such as, bullets, inside a 

patient‘s body.  As imaging techniques and resolutions 

improved, physicians began to use these methods to locate 

medical abnormalities (e.g., cancer), both for planning 

surgery and for diagnosing the disease.  The state-of-the-art 

of medical imaging improved to the point that it soon 

required its own specialty, namely, radiologists, who were 

skilled at interpreting these increasingly complex images. 

The introduction of computers and the subsequent 

invention of computed tomography (CT) (Ambrose and 

Hounsfield 1973) in the 1970s created another paradigm – 

that of 3-dimensional imaging. X-ray beams were used to 

compute a 3-d image of the inside of the body from several 

2-d X-ray images taken around a single axis of rotation.  

Radiologists were now not only able to detect subtle 

variations of structures in the body; they were now able to 

locate them within a fixed frame of reference.  Early CT‘s 

generated images or slices orthogonal to the long axis of 

the body, modern scanners allow this volume of data to be 

reformatted in various planes or even visualized as 

volumetric (3D) representations of structures.   

It is natural to ask whether the improved resolution of 

medical imaging has clinical value.  Consider the use of 

CTs to diagnose lung cancer. Lung cancer is the most 

commonly diagnosed cancer worldwide, accounting for 1.2 

million new cases annually. Lung cancer is an 

exceptionally deadly disease: 6 out of 10 people will die 

within one year of being diagnosed. The expected 5-year 

survival rate for all patients with a diagnosis of lung cancer 

is merely 15%. In the United States, lung cancer is the 

leading cause of cancer death for both men and women and 

costs almost $10 billion to treat annually.  

However, lung cancer prognosis varies greatly depending 

on how early the disease is diagnosed; as with all cancers, 

early detection provides the best prognosis. At one extreme 

are the patients diagnosed with distant tumors (that have 

spread far from the lung, Stage IV patients), for whom the 

5-year survival rate is just 2%. The prognosis of early stage 

lung cancer patients (Stage I) is more optimistic with a 
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mean 5 year survival rate of about 49%. This follows 

logically since early detection implies the cancer is found 

when it is still relatively small in size (thus, fewer cancer 

cells in the body) and localized (before it has spread).  

Therefore, many treatment options are viable (surgery, 

radiotherapy, chemotherapy) if it is detected early. 

In order to identify and characterize minute lung nodules 

the resolution of the image must be improved.  The recent 

development of multi-detector computed tomography 

(MDCT) scanners has made it feasible to detect lung cancer 

at very early stages, and the number of lung nodules 

routinely identified in clinical practice is steadily growing. 

The key factor in CT is the slice thickness (the distance 

between two axial cross-sectional X-rays)–smaller slice 

thickness means increased resolution.  Today‘s MDCT‘s 

are capable of locating lung nodules that are 2-8mm in size; 

cancers found at this early stage have excellent prognosis.  

Despite these technologies, only 24% of lung cancer cases 

are diagnosed at an early stage (Jemal, et al. 2007). Many 

potentially clinically significant lesions remain undetected. 

One contributing factor could be the explosion of MDCT 

imaging data: just 8 years ago, the 2-slice CT could acquire 

41 axial images of the thorax in a 30-second scan (single 

breath hold); the state-of-the-art 64-slice dual-source CT 

acquires up to 3,687 axial images in 30 seconds for each 

patient. Figure 1 illustrates two such images for a single 

patient, and each image must then be carefully examined by 

a radiologist to identify which of the marks on the image 

correspond to normal structures (air passage), benign 

tumors, lung diseases other than cancer, and early-stage 

lung cancer.  Despite the exponential increase in data in a 

few years, radiologists have roughly the same case load (or 

in some cases greater) than was the case 20 years ago when 

they examined a handful of images per patient. 

1.1 Mining Medical Images 
There is a growing consensus among clinical experts that 

the use of computer-aided detection/diagnosis (CAD) 

software can improve the performance of the radiologist. 

The proposed workflow is to use CAD as a second reader 

(i.e., in conjunction with the radiologist) – the radiologist 

first performs an interpretation of the image as usual, and 

then runs the CAD algorithm (typically a set of image 

processing algorithms followed by a classifier), and 

highlights structures identified by the CAD algorithm as 

being of interest to the radiologist. The radiologist 

examines these marks and concludes the interpretation.  

Figure 1 shows super-imposed CAD marks on the images. 

Clinical studies have shown that the use of CAD software 

not only offers the potential to improve the detection and 

recognition performance of a radiologist, but also to reduce 

mistakes related to misinterpretation (Armato-III, Giger 

and Mac Mahon 2001, Naidich, Ko and Stoechek 2004). 

 
Figure 1 Suspicious regions highlighted on a Lung CT. 

The principal value of CAD is determined  not by its stand-

alone performance, but rather by carefully measuring the 

incremental value of CAD in normal clinical practice, such 

as the number of additional lesions detected using CAD. 

Secondly, CAD systems must not have a negative impact 

on patient management (for instance, false positives which 

cause the radiologist to recommend unnecessary biopsies 

and potentially dangerous follow-ups). 

This explosion in data is not confined to CT alone. The 

invention of the CT was rapidly followed by the 

development of 3-d magnetic resonance imaging (MRI).  

MRI uses a powerful magnetic field to align the water 

molecules in the body, and thus provides much greater 

contrast between the different soft tissues of the body than 

CT.  Positron emission tomography (PET) and Single 

photon emission computed tomography (SPECT) use 

radioactive isotopes to provide functional imaging.  

Recently, medicine has been moving towards fusion of 

these different imaging modalities to combine functional 

and structural properties in a single image.  As should be 

obvious, the ability to identify and characterize increasingly 

minute structures and subtle variations in bodily function in 

3-d images has resulted in an enormous explosion in the 

amount of data that must be processed by a radiologist.  It 

is estimated that in a few years, medical images will 

constitute fully 25% of all the data stored electronically. 

This vast data store also provides additional opportunities 

for data mining.  CAD algorithms have the ability to 

automatically extract features, quantify various lesions and 

bodily structures, and create features than can be 

subsequently mined to discover new knowledge.  This new 

knowledge can be further fed back into medicine as CAD 

progresses from detecting abnormal structures, to 

characterizing structures (identifies structures of interest, 

and also indicating whether they are malignant or not).  

Another area of interest is the use of CAD for change 

detection – for instance, to automatically measure tumors 

from images taken at different point in times and determine 

if the tumor size has changed.  Such methods can be used 

both for diagnosis (malignant tumors grow quickly) & 



therapy monitoring (is the tumor shrinking with the 

treatment). The discussion of CAD for change detection & 

for characterizing structures is beyond the scope of this 

paper. We shall restrict our attention to practical 

applications that are clinically deployed today.   

Medical image mining products can be useful even if they 

don‘t go all the way to computer aided detection. 

Sometimes it is sufficient to analyze images & quantify key 

features that are known to be highly diagnostic. Consider 

the automatic quantification of ultrasound images.  So far, 

all the modalities we have discussed take a snapshot of the 

body at a particular instant.  Cardiac ultrasound captures 

the very fast motion of the heart, as a results we have an 

added dimension of time to our data. We describe mining 

software that tracks the motion of the heart and 

automatically measures key clinical variables (ejection 

fractions) that characterize the function of the heart. 

1.2 Clinical Trials 
Commercial products for mining medical images need to be 

rigorously validated in clinical trials before they are cleared 

for sale by national regulatory bodies like the Food & Drug 

Administration (FDA). All the products described in this 

paper have been validated in clinical trials, and are sold 

internationally. Some of the CAD & image quantification 

products are cleared for sale in the US, and others are still 

in the process of obtaining regulatory approval (they are 

sold in other countries). More details will be provided for 

each product in Section 4.  

The rest of the paper is organized as follows: Section 2 

provides the clinical motivations for the image-mining 

systems described in this paper. Section 3 describes some 

of the original research in data-mining and machine 

learning that was necessary to develop these systems with a 

clinically acceptable level of accuracy. Section 4 

summarizes some of the results obtained from clinical 

validation studies.  Section 5 concludes the paper by 

summarizing the key lessons learnt while developing such 

high impact data mining applications.  

2. CLINICAL MOTIVATION  
In this section we will describe some of the most 

commonly diagnosed cancers with some background 

information and clinical motivation for CAD software. 

2.1 Lung cancer 

 

Figure 2 Different nodule morphologies in the lung (from left 

to right)--Ground glass opacity nodule (GGN), Part-solid 

nodule (PSN), and Solid nodule (SN). 

Lung cancer is the most commonly diagnosed cancer 

worldwide, accounting for 1.2 million new cases annually. 

Lung cancer is an exceptionally deadly disease: 6 out of 10 

people will die within one year of being diagnosed. The 

expected 5-year survival rate for all patients with a 

diagnosis of lung cancer is merely 15%, compared to 65% 

for colon, 89% for breast, and 99.9% for prostate cancer.  

For lung cancer CAD systems are developed to identify 

suspicious regions called nodules (which are known to be 

precursors of cancer) in CT scans of the lung. Clinically a 

solid nodule is defined as an area of increased opacity more 

than 5mm in diameter which completely obscures 

underlying vascular marking.  Translating this definition 

into image features and data mining algorithms is the key 

challenge. While it is universally acknowledged that solid 

nodules are precursors for lung cancer, recently there has 

been increased interest in detecting what are known as part-

solid nodules (PSN) & ground-glass opacities (GGN). A 

GGN is defined as an area of a slight, homogenous increase 

in density, which did not obscure underlying bronchial and 

vascular markings. GGNs are known to be extremely hard 

to detect. Several studies (Suzuki, et al. 2006) have pointed 

out that they are an indicator of early cancer.  

One important factor when designing CAD systems for 

mining lung images is the relative difficulty in obtaining 

ground truth for lung cancer. Whereas, for example, in 

breast cancer virtually all suspicious lesions are routinely 

biopsied (providing definitive histological ground truth), a 

lung biopsy is a dangerous procedure, with a 2% risk of 

serious complications (including death). It makes obtaining 

definitive lung cancer ground truth infeasible, particularly 

for patients being evaluated for early signs of lung cancer. 

So very often CAD systems are built using image 

annotations from multiple expert radiologists. 

2.2 Breast cancer 
 

 

Figure 3 A typical malignant mass on a mammogram. 



Breast cancer is the second most common form of cancer in 

women, after non-melanoma skin cancer (Group 2009). 

Breast cancer is the number one cause of cancer death in 

Hispanic women. It is the second most common cause of 

cancer death in white, black, Asian/Pacific Islander, and 

American Indian/Alaska Native women. In 2005 alone 

186,467 women and 1,764 men were diagnosed with breast 

cancer; 41,116 women and 375 men died from the disease. 

Breast cancer is an abnormal growth of the cell the 

normally line the ducts and the lobules. Figure 3 shows a 

typical abnormal growth called mass on a digital 

mammogram. X-ray Mammography is now accepted as a 

valid method for breast cancer screening, after many years 

in which its effectiveness was questioned. Current 

guidelines recommend screening mammography every year 

for women, beginning at age 40.  CAD systems search for 

abnormal areas of density, mass, or calcification in a 

digitized mammographic image. These abnormal areas 

generally indicate the presence of cancer. The CAD system 

highlights these areas on the images, alerting the radiologist 

to the need for a further diagnostic imaging or a biopsy. 

2.3  Colon cancer 
Colorectal cancer (CRC) is the third most common cancer 

in both
 
men and women. It is estimated that in 2004, nearly 

147
,
000 cases of colon and rectal cancer will be diagnosed 

in the
 
USA, and more than 56 730 people would die from 

colon cancer,
 
accounting for approximately 11% of all 

cancer deaths. Early detection of colon
 
cancer is the key to 

reducing the 5-year survival rate. In particular, since it
 
is 

known that in over 90% of cases the progression stage 

for
 
colon cancer is from local (polyp adenomas) to 

advanced stages
 
(colorectal cancer), it is critical that major 

efforts be devoted
 
to screening of colon cancer and removal 

of lesions (polyps)
 
when still in a early stage of the disease.  

Colorectal polyps are small colonic findings that may 

develop into cancer at a later stage (See Figure 4). 

Screening of patients and early detection of polyps via 

Optical Colonoscopy (OC) has proved to be efficient as the 

mortality rate from colon cancer is currently decreasing 

despite an aging population. CT Colonoscopy (CTC), also 

known as Virtual Colonoscopy (VC) is an increasingly 

popular alternative to standard OC. In VC, a volumetric CT 

scan of the distended colon is reviewed by the physician by 

looking at 2D slices and/or using a virtual fly-through in 

the computer-rendered colon, searching for polyps. Interest 

in VC is increasing due to its many advantages over OC 

(better patient acceptance, lower morbidity, possibility of 

extra-colonic findings, etc.), with only a small penalty on 

sensitivity if the reader is a trained radiologist. 

Polyp Enhanced Viewing (PEV) systems exploit the full 3-

D volume of the colon and use specific image processing & 

feature calculation algorithms to boost radiologists‘ 

sensitivity (Bogoni, et al. 2005) while detecting polyps. 

 

Figure 4 CT scan with enhanced visualization of a polyp in the 

colon. 

2.4 Pulmonary Embolism 
Pulmonary Embolism (PE) is a sudden blockage in a 

pulmonary artery caused by an embolus that is formed in 

one part of the body and travels to the lungs in the 

bloodstream through the heart. PE is the third most 

common cause of death in the US with at least 600,000 

cases occurring annually. It causes death in about one-third 

of the cases, that is, approximately 200,000 deaths 

annually. Most of the patients who die do so within 30 to 

60 minutes after symptoms start; many cases are seen in the 

emergency department. We developed a fast yet effective 

approach for computer aided detection of pulmonary 

embolism (PE) in CT pulmonary angiography (CTPA). Our 

research has been motivated by the lethal, emergent nature 

of PE and the limited accuracy and efficiency of manual 

interpretation of CTPA studies. 

Treatment with anti-clotting medications is highly 

effective, but sometimes can lead to subsequent 

hemorrhage and bleeding; therefore, the anti-clotting 

medications should be only given to those who really need. 

This demands a very high specificity in PE diagnosis. 

Unfortunately, PE is among the most difficult conditions to 

diagnose because its primary symptoms are vague, non-

specific, and may have a variety of other causes, making it 

hard to separate out the critically ill patients who suffer 

from PE. PE cases are missed in diagnosis more than 

400,000 times in the US each year. If pulmonary embolism 

can be diagnosed and appropriate therapy started, the 

mortality can be reduced from approximately 30 percent to 

less than ten percent; roughly 100,000 patients die who 

would have survived with the proper and prompt diagnosis 

and treatment. A major clinical challenge, particularly in an 

emergency room scenario, is to quickly and correctly 

diagnose patients with PE and then send them on to 

treatment. A prompt and accurate diagnosis of PE is the 

key to survival. 



 

Figure 5 Highlighted Pulmonary embolism on the Lung CT 

2.5 Cardiac  
Cardiovascular Disease (CVD) is a global epidemic that is 

the leading cause of death worldwide (17 million deaths per 

year). In the United States, CVD accounted for 38% of all 

deaths in 2002 [7] and was the primary or contributing 

cause in 60% of all deaths. Coronary Heart Disease (CHD) 

accounts for more than half the CVD deaths (roughly 7.2 

mil. deaths worldwide every year, and 1 of every 5 deaths 

in the US), and is the single largest killer in the world.  

One important tool required for assessing the condition of 

the heart is the automatic assessment of the left ventricular 

ejection fraction (EF). EF is a relevant criterion for 

pharmacologic, defibrillator, and resynchronization 

therapy, therefore, being able to automatically calculate a 

robust EF measure is of interest to improve clinical 

workflow. Currently, the method widely used in clinical 

practice consists of a subjective visual estimation of EF, 

even though it is prone to significant variability. 

The reliable delineation of the left ventricle (LV) for robust 

quantification requires years of clinical experience and 

expertise by echocardiographers and sonographers. Even 

with acceptable image quality, issues such as trabeculations 

of the myocardium, fast-moving valves, chordi and 

papillary muscles, all contribute to the challenges 

associated with delineation of the LV. Technical issues, 

such as the fact that a 2D plane is acquired on a twisting 3D 

object, make this problem even more difficult. Limited 

success has been achieved in automated quantification 

based on LV delineation with methods that simply look for 

a border between black and white structures in an image. 

3. DATA MINING CHALLENGES  
This section describes the intuition & key ideas motivating 

some of the data mining algorithms developed by our group 

to improve medical image processing applications. 2  

                                                                 

2 While our group has written over 150 papers on this topic, 

for brevity we are only describing a selected subset. 

 

Figure 6 Automated measurement of ejection fraction 

The goal is to either extract key quantitative features 

summarizing vast volumes of data, or to enhance the 

visualization of potentially malignant nodules, tumors, 

emboli, or lesions in medical images like CT scan, X-ray, 

MRI etc. Most medical image mining algorithms operate in 

a sequence of three stages (see Figure 7 ): 

1. Candidate generation: This stage identifies suspicious 

unhealthy regions of interest (called candidates) from a 

medical image. This step is based on image processing 

algorithms which try to search for regions in the image 

which look like the particular anomaly/lesion. While this 

step can detect most of the anomalies (around 90-100% 

sensitivity), the number of false positives will be extremely 

high (on the order of 60-300 false positives/image). 

2. Feature extraction: This step involves the computation 

of a set of descriptive morphological or texture features for 

each of the candidates using advanced image processing 

techniques.  

3. Classification: This stage differentiates candidates that 

are true lesions from the rest of the candidates based on 

candidate feature vectors. The goal of the classifier is to 

reduce the number of false positives (to 2-5 false 

positives/patient, image) without appreciable decrease in 

the sensitivity.  

Image quantification & enhanced visualization algorithms 

do not necessarily include a classifier, but they often use 

image processing & pattern recognition algorithms for 

candidate generation & feature extraction. CAD systems 

use all three stages described above & aid the radiologist by 

marking the location of likely anomalies on a medical 

image. The radiologist then makes a decision whether to 

conduct a biopsy or other follow-ups.  Since biopsies are 

expensive and invasive, CAD systems demand as few false 

positives (2-5 false positives/patient, image) as possible 

while at the same time achieving high sensitivity (>80%).  

While all the three stages are equally important, in this 

article we will focus on the data mining challenges & will 

not discuss image processing algorithms. 



 

Figure 7 Typical data-flow architecture of software for mining 

clinical-image data 

Many standard algorithms, such as support vector machines 

(SVM), back-propagation neural nets, kernel Fisher 

discriminant, have been used to detect malignant structures 

& to quantify key features. However, these general-purpose 

learning methods make implicit assumptions that are 

commonly violated in this application domain, resulting in 

sub-optimal performance. 

For example, traditional learning methods almost 

universally assume that the training samples are 

independently drawn from an identical — albeit 

unobservable — underlying distribution (the ubiquitous 

i.i.d. assumption), which is almost never the case in 

medical image mining systems.  There are high levels of 

correlations among the suspicious locations from the same 

region of an image, so the training samples are clearly not 

independent. Further, these standard algorithms try to 

maximize classification accuracy over all candidates. 

However, this particular accuracy measure is not very 

relevant for CAD.  In Section 3.1 we show how the 

multiple-instance learning paradigm can solve both these 

problems. In Section 3.5 we show how to handle 

correlations among different candidates in the same image. 

In CAD it is common that only an extremely small portion 

of the candidates identified in the candidate generation 

stage are actually associated with true malignant lesions, 

leading to a highly unbalanced sample distribution over the 

normal (negative) and abnormal (positive) classes. In 

Section 3.2 we show that cascaded classification schemes 

are extremely useful in balancing skewed data distribution 

as well as to reduce the runtime of the CAD system. 

Unlike scenarios where we are given a set of features, in 

CAD the features are engineered by the researchers. When 

searching for descriptive features, researchers often deploy 

a large amount of experimental image features to describe 

the identified candidates, which consequently introduces a 

lot of irrelevant or redundant features. Sparse model 

estimation is often desired and beneficial (described in 

Section 3.3). The candidate generation step generally 

produces hundreds of candidates for a CT scan. Computing 

all the features can be very time-consuming. Hence it is 

imperative that the final classifier uses as few features as 

possible without any decrease in the sensitivity. 

 Medical domain knowledge often sheds a light on the 

essential learning process. For example a-priori we may 

know that there are three different kinds of abnormalities 

(positives). Efficiently incorporating related medical 

domain knowledge into the automatic learning algorithms 

yields better CAD systems. In Section 3.4 we show some of 

our solutions to incorporate domain knowledge. Section 3.6 

and Section 3.7 describe some methods multi-task learning 

and learning with supervision from multiple experts.  

3.1 Multiple-Instance Learning 
In order to train a classifier, a set of CT 

scans/mammograms is collected from hospitals. These 

scans are then read by expert radiologists who mark the 

lesion locations; this constitutes our ground truth for 

learning. The candidate generation step generates a lot of 

potential candidates. Any candidate which is close to the 

radiologist mark is considered a positive example for 

training and the rest of the candidates are considered as 

negative examples.  Candidates are labeled positive if they 

are within some pre-determined distance from a radiologist 

mark (see Figure 8 for an illustration); some of the 

positively labeled candidates may actually refer to healthy 

structures that just happen to be near a mark, thereby 

introducing labeling errors in the training data. These 

labeling errors can potentially sabotage the learning process 

by ‗confusing‘ a classifier that is being trained with faulty 

labels, resulting in classifiers with poor performance. As 

shown in (Fung, et al. 2006) multiple-instance-learning is 

one of the effective ways to deal with this problem. During 

this labeling process, we also obtain information about 

which candidates point to the same underlying ground-truth 

lesion. While this information is typically discarded during 

the development of traditional classifiers, the multiple-

instance learning (MIL) framework can utilize this 

information to extract more statistical power from the data. 

In the MIL framework the training set consists of bags. A 

bag contains many instances. All the instances in a bag 

share the same bag-level label. A bag is labeled positive if 

it contains at-least one positive instance.  A negative bag 

means that all instances in the bag are negative.  The goal 

is to learn a classification function that can predict the 

labels of unseen instances and/or bags. Figure 9 illustrates 

that MIL can yield very different classifiers over the 

conventional single instance learning. The single instance 

classifier on the left is trying to reject as many negative 

candidates as possible and detect as many positives as 

possible. The MIL classifier on the right tries to detect at-

least one candidate in a positive bag and reject as many 

negative candidates as possible. 

Candidate Generation 

Feature Computation 

Classification 

Image 

Lesion locations 



 

 Figure 8 A mammogram of the right breast illustrating the 

concept of multiple candidates pointing to the same ground 

truth. The red ellipse is the lesion as marked by the radiologist 

(ground truth). The blue contours are the candidates 

generated by our algorithm. 

 

 

Figure 9 Illustration of single-instance learning (left) and 

multiple instance learning (right) for a toy problem. The red 

circles are negative candidates. The blue shapes are positives. 

There are three positive bags (square, triangle, and diamond). 

There is another important reason why MIL is a natural 

framework for CAD. The candidate generation algorithm 

produces a lot of spatially close candidates. Even if one of 

these is highlighted to the radiologist and other adjacent or 

overlapping candidates are missed, the underlying lesion 

would still have been detected. Hence while evaluating the 

performance of CAD systems we use the bag level 

sensitivity, i.e., a classifier is successful in detecting a 

lesion if at least one of the candidates pointing to it is 

predicted as a PE. MIL naturally lends itself to model our 

desired accuracy measure during training itself. 

We have proposed several new MIL algorithms (Fung, et 

al. 2006, Raykar, Krishnapuram, et al. 2008, Krishnapuram, 

et al. 2008, Bi and Liang, Multiple Instance Learning of 

Pulmonary Embolism Detection with Geodesic Distance 

along Vascular Structure 2007, Chen, Bi and Wang 2006, 

Wu, Bi and Boyer 2009) specifically for the CAD domain. 

These involve a way of modifying the traditional classifiers 

for multiple-instance learning. These modifications have 

substantially improved our classifier‘s accuracy. 

For example (Fung, et al. 2006) modified the SVM by 

forming convex hulls of the instances in each individual 

bag. The main idea is to search a good representative point 

in the convex hull and correctly classify this point in 

contrast to the conventional method where all the points in 

need to be correctly classified. This allows the classifiers to 

have certain degree of tolerance to noisy labels and makes 

use of the practical observation that not all candidates close 

to a nodule mark need to be identified. Mathematically, the 

convex-hull representation idea can be used with many loss 

functions and regularization operators.  

In (Raykar, Krishnapuram, et al. 2008) we incorporate the 

definition of a positive bag to modify the link function in 

logistic regression. Standard logistic regression uses a 

sigmoid function to model the probability of the positive 

class. For MIL since we have the notion of a positive bag 

the probability that a bag contains at-least one positive 

instance is one minus the probability that all of them are 

negative. The algorithm selects features & designs the 

classifier jointly. Our results show that MIL based classifier 

selects much fewer features than conventional logistic 

regression and at the same time achieves better accuracy. 

3.2 Cascaded classification architecture 
Typical CAD training data sets are large and extremely 

unbalanced between positive and negative classes.  In the 

candidate identification stage, high sensitivity (ideally close 

to 100 %) is essential, because any cancers missed at this 

stage can never be found by the CAD system, this high 

sensitivity at the candidate generation stage is achieved at 

the cost of a high false positives (less than 1% of the 

candidates are true lesions), making the subsequent 

classification problem highly unbalanced. Moreover, a 

CAD system has to satisfy stringent real-time performance 

requirements in order for physicians to use it during their 

diagnostic analysis. 

These issues can be addressed by employing a cascade 

framework in the classification approach as discussed in 

(Bi, Periaswamy, et al. 2006).  In Figure 10 a typical 

cascade classification scheme is shown. The key insight 

here is to reduce the computation time and speed-up online 

learning. This is achieved by designing simpler yet highly 

sensitive classifiers in the earlier stages of the cascade to 

reject as many negative candidates as possible before 

calling upon classifiers with more complex features to 

further reduce the false positive rate. A positive result from 

the first classifier activates the second classifier and a 

positive result from the second classifier activates the third 

classifier, and so on. A negative outcome for a candidate at 

any stage in the cascade leads to its immediate rejection. 



 

Figure 10 A general cascade framework used for online 

classification and training. 

 

Figure 11 A novel AND-OR framework for training a cascade 

of classifiers. 

The method in (Bi, Periaswamy, et al. 2006) investigated a 

cascaded classification approach that solves a sequence of 

linear programs, each constructing a hyperplane (linear) 

classifier. The linear programs are derived through piece-

wise linear cost functions together with the l1-norm 

regularization condition. The main idea is to incorporate 

the computational complexities of individual features into 

the feature selection process. Each linear program employs 

an asymmetric error measure that penalizes false negatives 

and false positives with different costs. An extreme case is 

that the penalty for a false negative is infinity, which is 

used in the early stage of the cascade design to alleviate the 

skewed class distribution and preserve high detection rates. 

The approach in (Bi, Periaswamy, et al. 2006) follows the 

standard cascade procedure to train classifiers sequentially 

for each different stage, which amounts to a greedy 

scheme, meaning that the individual classifier is optimized 

only toward the specific stage given the candidates 

survived from the stages prior to it. The classifiers are not 

necessarily optimal to the overall structure where all stages 

are taken into account. A novel AND-OR cascade training 

strategy  as illustrated in Figure 11 was proposed in (Dundar 

and Bi, Joint Optimization of Cascaded Classifiers for 

Computer Aided Detection 2007) to optimize all the 

classifiers in the cascade in parallel by minimizing the 

regularized risk of the entire system. By optimizing 

classifiers together, it implicitly provides mutual feedback 

to different classifiers to adjust parameter design. This 

strategy takes into account the fact that in a classifier 

cascade, a candidate is classified as positive only if all 

classifiers say it is positive, which amounts to an AND 

relation among classifiers. Nevertheless, a candidate is 

labeled as negative as long as one of the classifiers views it 

as negative, an OR relation of classifiers. 

3.3  Feature selection/Learning sparse models 

Feature selection has long become an important problem in 

statistics and machine learning and is highly desired in 

CAD applications. When searching for descriptive features, 

researchers often deploy a large amount of experimental 

image features to describe the identified candidates, which 

consequently introduces a lot of irrelevant or redundant 

features.  It is also well-known that a reduction of features 

improves the classifier's generalization capability.  

However, the problem of selecting an "optimal" subset of 

features from a large pool (in the orders of up to hundreds) 

of potential image features is known to be NP-hard. An 

early Lung CAD system utilized a greedy forward selection 

approach. Given a subset of features, the greedy approach 

consists of finding a new single feature from the feature 

pool that improves classification performance when 

considering the expanded subset of features. This procedure 

begins with an empty set of features and stops when 

classification performance does not improve significantly 

when any remaining feature is added. At each step, 

classification performance is measured based on Leave-

One-Patient-Out (LOPO) cross-validation procedure 

(Dundar, Fung and Bogoni, et al. 2004).  

Recent research has focused more on general sparsity 

treatments to construct sparse estimates of classifier 

parameters, such as in LASSO, the 1-norm SVM, and 

sparse Fisher's discriminant analysis. In (Dundar, Fung and 

Bi, et al. 2005) we proposed a sparse formulation for Fisher 

Linear Discriminant that scales well to large datasets; our 

method inherits all the desirable properties of FLD, while 

improving on handling large numbers of irrelevant and 

redundant features.  

In (Raykar, Krishnapuram, et al. 2008) using a multiple 

instance learning setup we proposed a method to do feature 

selection and classifier design jointly using a Bayesian 

paradigm. Our results show that MIL based classifier 

selects much fewer features than conventional logistic 

regression and at the same time achieve better accuracy. 

 



 

Figure 12 A typical gated classification architecture. 

 

3.4 Gated classification architecture 
Incorporating medical knowledge and prior observations 

can be critical to improving the performance of the CAD 

system. For example lesions have various characteristics in 

their shapes, sizes, and appearances. The simplest example 

is that lesions can be very big or small. Many of the image 

features are calculated by averaging over the voxels within 

segmented nodule. Features calculated on large lesions will 

hence be more accurate than those evaluated on a small 

one. Consequently, it may be more insightful to construct 

classifiers with separate decision boundaries respectively 

for large candidates and small candidates. Gating is a 

technique used to automatically learn meaningful clusters 

among candidates and construct classifiers, one for each 

cluster, to classify true candidates from false detections. 

(See Figure 12) This can obviously be extended to 

incorporate different kinds of knowledge, for instance, to 

exploit differences between the properties of central versus 

peripheral nodules, or between sessile and flat polyps. 

A novel Bayesian hierarchical mixture of experts (HME) 

has been developed and tested in our Lung CAD system.  

The basic idea behind the HME is to decompose a 

complicated task into multiple simple and tractable 

subtasks. The HME model consists of several domain 

experts and a gating network that decides which experts are 

most trustworthy on any input pattern. In other words, by 

recursively partitioning the feature space into sub-regions, 

the gating network probabilistically decides which patterns 

fall in the domain of expertise of each expert.  

In many scenarios we know what kind of false positives our 

system generates. We may also have labels for the different 

sub-classes in the negatives. In (Dundar, Wolf, et al. 2008) 

we presented a methodology to take advantage of the 

subclass information available in the negative class to 

achieve a more robust description of the target class. The 

subclass information which is neglected in conventional 

binary classifiers provides a better insight of the dataset and 

when incorporated into the learning mechanism acts as an 

implicit regularizer. We proposed a method to train a 

polyhedral classifier jointly, where each face of the 

polyhedron can classify each of the negative sub-class.  The 

linear faces of the polyhedron achieve robustness whereas 

multiple faces provide flexibility. 

3.5 Handling internal correlations 
Most classification systems assume that the data used to 

train and test the classifier are independently drawn from 

an identical underlying distribution. For example, samples 

are classified one at a time in a support vector machine 

(SVM), thus the classification of a particular test sample 

does not depend on the features from any other test 

samples. Nevertheless, this assumption is commonly 

violated in many real-life problems where sub-groups of 

samples have a high degree of correlation amongst both 

their features and their labels.  Due to spatial adjacency of 

the regions identified by a candidate generator, both the 

features and the class labels of several adjacent candidates 

can be highly correlated during training and testing. We 

proposed batch-wise classification algorithms to explicitly 

account for correlations (Vural, et al. 2009). 

In this setting, correlations exist among both the features 

and the labels of candidates belonging to the same (batch) 

image both in the training data-set and in the unseen testing 

data. Furthermore, the level of correlation can be captured 

as a function of the pair wise-distance between candidates: 

the disease status (class-label) of a candidate is highly 

correlated with the status of other spatially proximate 

candidates, but the correlations decrease as the distance is 

increased. Most conventional CAD algorithms classify one 

candidate at a time, ignoring the correlations amongst the 

candidates in an image. Explicitly accounting for the 

correlation structure between the labels of the test samples, 

the algorithms proposed in (Vural, et al. 2009) jointly 

predict class assignments of spatially nearby candidates to 

improve the classification accuracy significantly. 

3.6 Multiple-task Learning 
We are often faced with a shortage of training data for 

learning classifiers for a task. However we may have 

additional data for closely related, albeit non-identical 

tasks. For example our data set includes images from CT 

scanners with two different reconstruction kernels. While 

training the classifier we could ignore this information and 

pool all the data together. However, there are some 

systematic differences that make the feature distributions 

slightly different. Alternatively, we could train a separate 

classifier for each kernel, but a large part of our data set is 

from one particular kernel and we have a smaller data set 

for the other. In (Raykar, Krishnapuram, et al. 2008, Bi, 

Xiong, et al. 2008) we use multi-task learning that tries to 

estimate models for several classification tasks in a joint 

manner. Multi-task learning can compensate for small 

sample size by using additional samples from related tasks, 

and exchanging statistical information between tasks.  

3.7 Learning from multiple experts 
In many CAD applications it is actually quite difficult to 

obtain the ground truth. The actual gold standard (whether 



it is cancer or not) can be obtained from biopsies, but since 

it is an expensive and an invasive process, often CAD 

systems are built from labels assigned by multiple 

radiologists who identify the locations of malignant lesions. 

Each radiologist visually examines the medical images and 

provides a subjective (possibly noisy) version of the gold 

standard.  In practice, there is a substantial amount of 

disagreement among the experts, and hence it is of great 

practical interest to determine the optimal way to learn a 

classifier in such a setting. 

In (Raykar, Yu, et al. 2009) we propose a Bayesian 

framework for supervised learning in the presence of 

multiple annotators providing labels but no absolute gold 

standard. The proposed algorithm iteratively establishes a 

particular gold standard, measures the performance of the 

annotators given that gold standard, and then refines the 

gold standard based on the performance measures. 

Experimental results indicate that the proposed method is 

superior to the commonly used majority voting baseline. 

3.8 Scalability for massive data 
Often a great amount of candidates are commonly produced 

in the candidate generation stage to uncover any suspicious 

regions, which results in large massive training data. This 

imposes a requirement for the scalability of the learning 

algorithms. Typically we have observed that linear models 

are more computationally tractable than sophisticated non-

linear methods. Boosting algorithms are also efficient to 

scale up with large data.  

3.9 Detection of shapes 
In this section we will briefly describe our proposed 

solution for the estimation of the ejection fraction. Accurate 

analysis of the myocardial wall motion of the left ventricle 

is crucial for the evaluation of the heart function. This task 

is difficult due to the fast motion of the heart muscle and 

respiratory interferences. It is even worse when ultrasound 

image sequences are used since ultrasound is the noisiest 

among common medical image modalities such as MRI or 

CT. Figure 13 illustrates the difficulties of the tracking task 

due to signal dropout, poor signal to noise ratio or 

significant appearance changes. 

 

Figure 13 Echocardiography images with area of acoustic 

drop-out, low signal to noise ratio and significant appearance 

changes. Local wall motion estimation has covariances 

(depicted by the solid ellipses) that reflect noise. 

 

Figure 14 The block diagram of the robust tracker with the 

measurement and filtering processes 

In (Georgescu, et al. 2004) a unified framework was 

introduced for fusing motion estimates from multiple 

appearance models and fusing a subspace shape model with 

the system dynamics and measurements with 

heteroscedastic noise. The appearance variability is 

modeled by maintaining several models over time. This 

amounts for a nonparametric representation of the 

probability density function that characterizes the object 

appearance. Tracking is performed by obtaining 

independently from each model a motion estimate and its 

uncertainty through optical flow. The diagram of the 

proposed robust tracking proposed is illustrated in Figure 

14. The approach is robust in two aspects: in the 

measurement process, Variable-Bandwidth Density-based 

fusion is used for combining matching results from 

multiple appearance models and in the filtering process, 

fusion is performed in the shape space to combine 

information from measurement, prior knowledge and 

models while taking advantage of the heteroscedastic 

nature of the noise.   

4. CLINICAL IMPACT 
The true measure of impact for a medical image mining 

system is not in terms of how accurate it is, but rather how 

much a radiologist can benefit by using the software. For 

example, most CAD systems are deployed in a second 

reader mode, i.e., the radiologist invokes the CAD only 

after he/she has read the case without any prompting from 

the CAD software.  

A radiologist is likely to use the software only if it is 

clinically validated. In order to measure the impact of our 

software in such a scenario we have conducted several 

clinical studies/trials with our collaborators in different 

parts of the world. These studies have been conducted 

independently by our collaborators and the results have 

been disseminated at the annual meetings of the 

Radiological Society of North America, European Society 

of Radiology, and various radiology journals.  In this 

section we will briefly describe some of the most recent 

studies and results, which should give a sense of the real 

impact of our medical image mining products. In order to 

keep this section concise we have only presented a sample 



of the studies and omitted a large number of other studies 

from the literature. All the systems studied below are 

commercially distributed worldwide3.  

4.1 Lung  
In a clinical validation study submitted to the FDA, we 

analyzed a retrospective sample of 196 cases from 4 large 

research hospitals. CT Scans were collected from patients 

referred for routine assessment of clinically or 

radiographically known or suspected pulmonary nodules. 

These cases contained a total of 1320 nodules as confirmed 

by a majority of a panel of 5 expert radiologists. The cases 

were interpreted independently by 17 community 

radiologists first without and then with the use of our 

LungCAD product. Every one of these 17 radiologists 

improved their detection of solid nodules ≥ 3 mm to a 

statistically significant extent. The average reader 

improvement in AUC using the nonparametric ROC 

technique for detecting nodules was 0.048 (p<0.001) with a 

95% confidence interval of (0.036, 0.059). This study 

showed a statistically significant improvement in the area 

under the nonparametric ROC curve with the use of our 

Lung CAD software for detection of lung nodules 

A subsequent clinical study (Godoy, et al. 2008) was done 

with 54 chest CT scans by a group of four radiologists at 

New York University Medical Center to evaluate the 

impact of our most recent Lung CAD system at finding 

different kinds of nodules in the lung. The 54 cases used in 

the study had total of 395 nodules of which 234 were solid 

nodules, 29 were part-solid nodules, and 132 ground-glass 

opacities.  Two readers read the 54 cases first without CAD 

and then with CAD. The study showed that (see Table 1) 

the CAD software resulted in a significant increase in 

sensitivity by 9.8 % for reader 1 and by 10.6 % for reader 

2. The use of CAD did not increase the number of false 

positives for any of the readers.  

Newer research prototype systems have also been studied 

although they have not yet been distributed commercially. 

A study (LungCAD_ARRS_2009) presented at the recent 

American Roentgen Ray Society 2009 annual meeting 

concluded that the use of our research prototype 

significantly increased the mean reader sensitivity in all 

subgroups (p < 0.001) (See Table 2).  

Based on these and many other clinical studies, we have 

demonstrated that the use of CAD as a second reader 

improves radiologist’s detection of different kinds of 

pulmonary nodules. 

 

 

 

                                                                 

3 PE CAD & MammoCAD are only sold outside the US. 

 Sensitivity 
without CAD 

Sensitivity 
with CAD 

Increase in 
sensitivity 

Reader 1 56.2 % 66.0 % 9.8 % 

Reader 2 79.2 % 89.8 % 10.6 % 

Table 1 Sensitivity for detecting different kinds of lung 

nodules without and with CAD for two different readers. 

Results are from (Godoy, et al. 2008). 

 

 Mean 
sensitivity 
without 

CAD 

Mean 
sensitivity 
with CAD 

Increase in 
sensitivity 

 Solid Nodules 60% 85% 15 % 

Part-solid 
Nodules 

80% 95% 15% 

Ground Glass 
Opacities 

75% 86% 11% 

 

Table 2 Mean sensitivity of four radiologists for detecting 

different kinds of lung nodules without and with CAD. Results 

are for a recent research prototype from 

(LungCAD_ARRS_2009). 

4.2 Colon  
For CT colonography we have developed what we call a 

Polyp Enhanced Viewer (PEV) system which helps the 

radiologist to properly visualize the polyps in three 

dimensions. In (Bogoni, et al. 2005) the utility of PEV was 

evaluated as part
 
of a study involving data sets obtained 

from two sites, New
 
York University Medical Center and 

the Cleveland Clinic
 
Foundation. PEV resulted in 90% 

sensitivity for detection of medium and large
 
sized polyps.  

Another study (Baker, et al. 2007) was conducted to 

determine whether PEV can help improve sensitivity of 

polyp detection by less-experienced radiologist readers. 

Seven less-experienced readers from two institutions 

evaluated the CT colonographic images and marked polyps 

with and without PEV. The average sensitivity of the seven 

readers for polyp detection was significantly improved with 

PEV—from 0.810 to 0.908 (p = .0152), a 9.8% increase in 

sensitivity. The number of false-positive results per patient 

without and with PEV increased from 0.70 to 0.96. Results 

of this study suggest that our software significantly 

improves polyp detection among less-experienced readers. 

4.3 Pulmonary Embolism  
Several independent evaluations of our PE CAD system 

have been performed in real clinical settings. Dr. Das et al 

(Das 2008) conducted a clinical study whose objectives 

were to assess the sensitivity of our PE CAD system for the 

detection of pulmonary embolism and to assess the 

influence on radiologists' detection performance. Forty-

three patients with suspected PE were included in this 



retrospective study. Sensitivity for the radiologist with and 

without CAD software was assessed. The mean overall 

sensitivity for the CAD software alone was 83%. Table 3 

summarizes the improvements in sensitivity obtained for 

the three readers.  

Dr. Lake et al (Lake 2006) also examined our PE CAD 

system and investigated its influence on interpretation by 

resident readers. 25 patients with suspected pulmonary 

embolus were included in this study.  Four radiology 

residents first independently reviewed all CT scans on a 

dedicated workstation and recorded sites of suspected PE 

and then reanalyzed all studies for a second time with the 

aid of the PE CAD. Overall, mean detection of PE by 

resident readers was increased from 53.5 % to 58.9 

(p<0.028).  Table 4 summarizes the improvements in 

sensitivity obtained for the four residents. 

Dr. Buhmann and his team (Buhmann, et al. 2007) 

evaluated another system with 40 clinical cases. This 

system was designed for detecting peripheral emboli, 

because the central emboli can be easily detected by 

radiologists. The evaluation concluded that CAD detection 

of findings incremental to the radiologists suggests benefits 

when used as a second reader, especially for peripheral 

emboli. We have also received feedbacks from other 

clinical sites with our PE CAD installations for evaluations. 

The consensus is that our PE CAD system is of special 

value in the emergency room, as it boosts the physicians' 

confidence in negative reports and reduces missing 

diagnosis; a critical issue in current PE patient 

managements, as diagnosis has been missed in about 70% 

of the cases. 

 Sensitivity 
without CAD  

Sensitivity 
with CAD 

Increase 
in 
sensitivity 

Reader 1 87% 98% 11% 

Reader 2 82% 93% 11% 

Reader 3 77% 92% 15% 

Table 3 Sensitivity for detecting pulmonary emboli in the lung 

without and with CAD for three different readers. Results are 

from (Das 2008) 

 

 Sensitivity 
without CAD  

Sensitivity 
with CAD 

Increase 
in 
sensitivity 

Resident 1 46.7 % 52.3 % 5.6% 

Resident 2 57.9 % 59.8 % 1.9% 

Resident 3 100 % 100 % 0.0% 

Resident 4 91.7 % 100 % 8.3% 

Table 4 Sensitivity for detecting pulmonary emboli in the lung 

without and with CAD for three different readers. Results are 

from (Lake 2006) 

4.4 Breast  
A study (Bamberger, et al. 2008) was conducted in order to 

assess the performance of a mammography algorithm 

designed to detect clusters, deemed actionable by expert 

radiologists. It was shown that algorithm achieved the goal 

of reproducing the performance of expert radiologists with 

98% sensitivity and very few false marks. The algorithm 

performed equally well in dense and non-dense breasts. 

 

4.5 Cardiac 
A clinical study (Cannesson, et al. 2007) was conducted to 

test three hypotheses regarding our AutoEF product: (1) 

AutoEF produces similar results to manually traced biplane 

Simpson‘s rule. (2) AutoEF performs with less variability 

than visual EF calculated by expert and novice readers. The 

EF was calculated by visual assessment by expert readers 

using all available views. (3) AutoEF correlates favorably 

with EF calculated by using magnetic resonance imaging 

(MRI). The study made the following conclusions: (1) 

When comparing AutoEF to manual biplane Simpsons‘ 

rule the two methods were closely related (with correlation 

coefficient r = 0.98; p < 0.01). (2) AutoEF correlated well 

with visual EF by expert readers (r = 0.96; p < 0.001), with 

a bias of 2%. The novice readers achieved similar results to 

that of the experts when using AutoEF (r = 0.96; p < 

0.001), even though they operated AutoEF for their first 

time. There was significantly lower inter-observer and 

intra-observer variability using AutoEF. (3) A favorable 

correlation was observed between AutoEF and MRI based 

estimation of EF.  

5. CONCLUSIONS & LESSONS LEARNT 

5.1 Impact of the commercially distributed 

products described in this paper  
In an era of dramatic medical advances, radiologists now 

have access to orders of magnitude more data for 

diagnosing patients. Paradoxically, the deluge of data 

makes it more difficult & time consuming to identify key 

clinical findings for improving patient diagnosis & for 

therapy selection. This paper describes our commercially 

deployed software for mining medical images to identify or 

to enhance the viewing of suspicious structures such as 

nodules, possible polyps, possibly early stage breast 

cancers (masses, clusters of micro-calcifications etc), 

pulmonary emboli, etc. This paper also described our 

commercial software for the quantification of key clinical 

information contained in raw image data.   

Every system described in this paper is marketed 

internationally4 by Siemens Medical Solutions USA, Inc. 

                                                                 

4 The Lung Nodule Enhanced Viewing software (predecessor to 

the current version of the LungCAD product) was launched in 

2004, AutoEF software was launched in 2006, Polyp Enhanced 

Viewing & PE detection software were launched in 2007, and 



Together, several thousand units of these products have 

been installed in hospitals. With radiology data (images) 

expected to reach 25% of all data in the hospital within the 

next few years, it is critical to have key enablers like 

knowledge driven, role-based context sensitive data mining 

software in this domain. The field is undergoing explosive 

growth, and there is a key opportunity for data mining 

technologies to impact patient care worldwide.   

5.2 Lessons Learnt 
Along the way, while developing these systems we learnt 

several key points that are absolutely critical for large scale 

adoption of data mining systems in an area where there is 

initially a lot of skepticism about the abilities of 

computerized systems. One of the key lessons was that the 

systems are not successful just by being more accurate. 

Their true measure of impact is in terms of how much they 

improve the radiologists in their diagnoses of patients, 

assisted by software. This raises the need for extensive 

validation of how the radiologists‘ accuracy changes while 

using the system.   

The second key lesson learnt was the need for first 

principles research innovation specific to the data domain. 

While we initially tried off-the-shelf methods like SVMs, 

we quickly learnt the need to focus on the specific data 

domain and the key data characteristics & requirements 

therein. We learnt that changing from an SVM to a 

boosting algorithm or a neural network really was not what 

improved system performance in a significant manner, it 

was absolutely essential to carefully analyze data, visualize 

and re-think the fundamental assumptions, evaluate which 

assumptions are appropriate for the problem, and study 

how we can change them while still retaining mathematical 

tractability. For example, we realized that the data is never 

independent and identically distributed (i.i.d.), a key 

assumption that is almost universal in most of the 

traditional classifier design technologies such as SVMs, 

neural networks etc.  

Along the way we learnt that the interplay between image 

processing and data mining components was crucial, and it 

was important to understand the impact of each component 

on the other in order to jointly optimize the overall product. 

Indeed good image processing algorithms created the 

features that made subsequent data mining algorithms 

successful, and often a deep analysis of the fundamental 

ideas behind these algorithms would lead to a much better 

understanding of the statistical issues that would be faced 

by the classifier.  

Driven by the needs of our data and our problem, we re-

evaluated the assumptions and re-thought systems from 

                                                                                                           

MammoCAD was launched in 2008. MammoCAD & PE CAD 

software are not sold in the USA, although they are commercially 

marketed in the rest of the world. 

first principles. This resulted in huge domain-specific 

improvements in system accuracy measures that are 

relevant for our products (as opposed to accuracy measures 

used in the data mining community based off the 0-1 loss 

for example). In all honesty, the initial approach of 

throwing a bunch of data mining algorithms at a problem 

and seeing what stuck simply led to initial disasters until 

we were humble enough to work on the problem we had 

rather than the method we liked. This was a second key 

lesson for us (most of the authors were practitioners who 

often came fresh from grad school trained in the data 

mining).  

A final lesson learnt from our work in this area was the 

need for securing buy in (and leadership) from key clinical 

subject matter experts in order to have them drive the 

product features and capabilities. Many of the key product 

definition ideas were a result of collaborating with 

radiologists who identified the key capabilities in system 

that should be developed – our best guesses as data mining 

researchers were based on what we found technologically 

challenging or exciting, but often a feature which was much 

less time consuming and ―low-tech‖ added much more 

value to end-users. The lesson was that while mining can 

add value, its use should be defined in collaboration with 

the end-user in order to fully exploit it in their workflow.  
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