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i Goal

s 10 detect and localize human faces in
any given grayscale/color image.

= Challenges: Invariant to
= different illumination conditions
= pOSE
= Camera orientation




i Applications

= Face Detection is the first crucial step in
face recognition, face tracking, pose
estimation and expression recognition,

= Surveillance

= Video indexing/summarization,
especially for new broadcasts and
videos.




i Important Survey papers

Ming-Hsuan Yang, David J. Kriegman, Narendra Ahuja, "Detecting
Faces in Images: A Survey" in IEEE Transactions on Pattern Analysis
and Machine Intelligence (January 2002), Vol. 24, No. 1

Henry A. Rowley, Shumeet Baluja, Takeo Kanade, "Neural Network-
Based Face Detection" in IEEE Transactions on Pattern Analysis and
Machine Intelligence (January 1998), Vol. 20, No. 1



i Two Approaches:

= Feature based
No training required
= Image based

Formulate as a two class problem face
vs nonface.Difficulty in getting all
nonfaces



i Database

s CBCL Face Database #1

(MIT Center For Biological and Computation Learning)
= [raining set : 2,429 faces, 4,548 non-faces
= Test set : 472 faces, 23,573 non-faces
= 19X19 grayscale images as pgm files

s Test set both frontal as well as non frontal
and rotated faces.

http://www.ai.mit.edu/projects/cbc
I




ining face database
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‘L Training nonface database
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Face database

* Test

ENCNEENENENENERE
ENEAEEENE NN
BN ENENEN N
ENENNANANEENN. OGS
AENERNEANEN SN
ARSI ENER N
ARSI E N
NN TEC M
E6 I L
HELGEIENE  AENE"SH
HENENEE'MEEEmD.
HANENCEEE  MENENES
ENCEOEEE AERER-H
AR NS N
o B
ANETENNEANE NSNS



nonface database

‘L Test
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i Evaluation criterion

= Pd Detection probability

s Pf False alarm (a nonface detected as a face)
= Pe Error probability

= Pe=0.5*(Pf+(1-Pd)

= Ideally require high Pd and low Pf

= Compromise between Pd and Pf



i Our Approach

= Preprocessing

= Feature selection (entire image,PCA,KPCA)
= Training (NN)

= Classification (NN,KNN)

= Discriminant Analysis(LDA,KLDA,BDA,KBDA)
= Adaboost

= Color based approaches



i Preprocessing

= Database has already cropped images
= Lighting Compensation

Subtract the best linear approximation

of the image

= Histogram equalization to improve
contrast




‘L Example

Original Image Best linear approx. Compensated Histogram equalized

5 10 15 5 10 15 5 10 15 5 10 15

Qriginal Image Best linear approx. Compensated Histogram equalized

a 10 15 a 10 15



i Neural Network

= Vectorize the image and use the 361
element vector as an input to the NN

= 3 layer network ( h hidden units )
= One output unit(1 face/ -1 nonface)
= sigmoid activation function

= Training : Gradient descent with
momentum



i Results

= Trained using 2,429 faces 4,548 non-
faces

s Tested on 472 faces and 472 nonfaces
= H=25 hidden units

= 500 epochs(rate=0.1 momentum=0.8)



iROC-varying the threshold
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i Comments

= The network is biased towards nonfaces
since the number of nonfaces is more.

= We can get better detection probability is
the number of faces is more than the
number of nonfaces used in training.
However the false alarm increases.

= We want high detection probability as we
can reduce false alarms by certain
heuristics.
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Principal Component Analysis

i (PCA)

= Subtract the mean
= Compute the scatter matrix

= Find the eigen values and their
corresponding eigen vectors

= Select c largest to capture the desired
variance

= Use the projections on the eigenvectors
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i Classification based on PC'’s

= K Nearest Neighbour(KNN)

= 100 components to capture 95% of the
variance

= Classification based on one nearest
neighbour

= Train a Neural network



Results

Threshold= 0

1000 faces Pd Pf Pe

1000 nonfaces

PCA KNN |0.6624 0.0828 0.2102
PCA NN 0.6897 0.0938 0.2025




i PCA KNN vs PCA NN

= PCA KNN Need to store all the training
samples and compare with the test
image. Can also use the mean face and
nonface

= However PCA NN gives better results
than PCA KNN



i Kernel PCA

= PCA is linear
= Uses only second order statistics
= Can do PCA in feature space

= EXpress dot product in feature space in
terms of kernel functions in the input
space



i Kernels used

= Gaussian

= Polynomial



Percentage of Variance captured
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Results
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PCA vs KPCA

Pd Pf Pe

PCA-KNN |0.6624 0.0828 0.2102

PCA-NN 0.6897 0.0938 0.2025

KPCA-KNN

KPCA-NN




i Comments

= KPCA gives lower performance than
PCA(??7?)

= KPCA is computationally more intensive



i Linear Discriminant Analysis

= PCA is unsupervised..so features found
by PCA need not be discriminating
among the classes

= LDA finds the direction which maximizes
the distance between the projected
means and minimizes the within class
scatter



‘L LDA

= Equations



‘L Projections-LDA
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KLDA

+

= LDA in feature space

= Use kernels to compute the dot
products




‘L Projections(
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LDA vs KLDA
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i Biased Discriminant Analysis BDA

= Push all the nonfaces as far away from
the face

= Minimize the within class scatter for
face only



‘L Projections
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i KBDA

= BDA if feature space

= Used Gaussian and second degree
polynomial kernels
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i LDA/BDA/KLDA/KBDA

progections of traming samples, LDA-test
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i Comparison of all methods

= Used 1000 faces and 1000 nonfaces for
training
= 472 faces and 472 nonfaces for testing

= For NN based methods threshold was
set to zero



Detection Probability
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Error Probability
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‘L Conclusions



Detecting faces in the entire

i image

= A 19 x 19 window is slid over the entire
image and the windowed image data is
sent as a vector to the detector

= T0 detect faces of different sizes the
scanning is repeated for successively
smaller scales of the image by
downsampling (typically by 1.2 to 1.4)




i Output of the detector




i Reducing false alarm

= Multiple detections in areas of the image
where there is a face, and false detections
only appear in a single position.

= Can be used to significantly reduce false
alarm

= Assuming faces do not overlap multiple
detections in the image can be assumed to be
a measure of high confidence that the
detected area to be a face.



i Consensus-voting scheme

= For each scale of the image, retain
information about the number of times
each pixel overlapped due to multiple
detections.

= Process the image for all scales
possible, we added all the vote matrices
to give the final vote matrix

= [ hreshold the final vote matrix



i After Consensus voting




i After Thresholding




Find Connected components
‘L and their bounding box




‘L Sample results



i Why not use color info....?

= Detect skin regions.

= In an 8x8 block if the number of skin
pixels is less than 32 eliminate the skin
region.

= Find all the connected components and
label them as face.



Color based face detection

+

Actual Image Skin Regions Processed Skin Regions




i How to detect skin regions?

s RGBtoY Cb Cr
= Get the joint distribution of Cb and Cr
for skin

= Under normal illuminations skin color
occupy small regions of the color space

s /7<Cb<127 133<Cr<173



Sample Results




i Eliminate false detections

Use aspect ratio
Search for face like features

L
L

se other detectors to validate face or not
se different color distribution models for

C

ifferent illumination conditions

(indoor/outdoor)

Ideal for real time applications where we
have one camera and the color distribution
model for that camera can be found
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