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Abstract— The aim of the assignment was to estimate the 

probability density function (PDF) of any arbitrary distribution 
from a set of training samples. PDF estimation was done using 
parametric (Maximum Likelihood estimation of a Gaussian 
model), non-parametric (Histogram, Kernel based and K-
nearest neighbor) and semi-parametric methods (EM algorithm 
and gradient based optimization). Application of EM algorithm 
for binary sequence estimation has also been discussed.  

I. INTRODUCTION 

Bayesian approach towards pattern classification      
consists of feature extraction and classification. Feature 
extraction involves the extraction of a lower dimensional 

feature vector from the pattern. Once the feature vector is 
extracted the pattern can be classified based on Bayes decision 
rule. Consider a C class problem. Let x  be a feature vector 
extracted from the given input pattern. The decision rule can be 
stated as 

Decide 
kC  if kjxCpxCp jk ≠∀> )/()/(             (1) 

The posterior probability can be calculated using the Bayes 
theorem as follows  

)(/)()/()/( xpCpCxpxCp kkk =                        (2) 

 .So the important part is the evaluation of the class conditional 
density )/( kCxp  for all the C classes. This is the training 

phase where we have a set of N feature vectors also called 
training samples { }Nxxx ......., 21=χ  belonging to class 

kC  and we estimate )/( kCxp given the N training samples. 

This has to be done for all the classes. To ease notation  
)/( kCxp  is referred as )(xp . Rest of the discussion will be 

with respect to one class only. 

  The different methods for PDF estimation can be classified as 
Parametric, Non-Parametric and Semi parametric. In parametric 
method the PDF is assumed to be of a standard form (generally 
Gaussian, Raleigh or uniform). The parameters of the assumed 
PDF can be estimated either using ML estimation or Bayesian 
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Estimation. The non parametric methods include histogram 
based, the kernel based methods and the K nearest neighbor 
methods. In semi parametric methods the given density can be 
modeled as a combination of known densities. The parameters 
can be estimated either using gradient descent or Expectation 
Maximization (EM) algorithm. 

  Section II discusses the example used to compare the 
various PDF estimation techniques and also the performance 
measure used. Section III, IV, V discusses  the parametric, non 
parametric and semi parametric techniques respectively. 
Section VI concludes. Section VII discusses the application of 
EM algorithm for binary sequence estimation. 

II. PROGRAM DETAILS 

A 2 dimensional feature vector was used in the program. 
Figure 1 show the original density function used. The 
brightness of the pixel corresponds to the density value at that 
point. In our case the density function is uniform in the white 
region. We would like to estimate the density from a set of N 
training samples drawn from it. The training samples were 
drawn from a uniform distribution over the entire range of the 
image and the sample was retained if it belonged to the white 
region or else discarded. In this way N random training 
samples were drawn 

         
                   Figure 1 Plot of original pdf’s used 

 
A GUI was written in MATLAB 6.1 to estimate the PDF from 
these N samples using different methods. Figure 2 shows a 
snapshot of the GUI. Once the PDF was estimated the method 
was evaluated using the Kullback-Leibler distance. The 
performance was evaluated as follows. First we draw M 
samples from the image called as testx . The PDF is evaluated at 
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each of the M points )(xpeval . Let )(xp be the original 

PDF then the Kullback-Leibler distance. D is defined as  
 

))(/)(ln()( xpxpxpD eval
xtest

∑=               (3) 

 Although D does not satisfy the triangle inequality and is 
therefore not a true metric, it satisfies many important 
mathematical properties. For example, it is a convex function of 

)(xpeval  , is always nonnegative, and equals zero only if 

)(xpeval = )(xp .For iterative algorithms , D was plotted as 

a function of the iteration number. Whenever )(xpeval  was 

zero D was evaluated by setting )(xpeval  to a very small 

value. Also it does not make sense to use this measure to 
compare different methods as we are choosing the test points 
only where the original PDF is not zero. Like in ML estimation 
we may get a good estimate in the region where the original 
PDF is not zero however where the PDF goes zero the estimate 
is very bad (though we are not considering regions where the 
original PDF is not zero). However this measure will be useful 
to study the effect of changing the parameters of a given 
method. 

 

 
 

Figure 2 A snapshot of the GUI 

III. PARAMETRIC ESTIMATION 

In parametric estimation the the PDF is assumed to have a 
known dis tribution. In our case a standard bivariate Gaussian 
was used. The standard multivariate Gaussian has the 
following form 

)()(2/1
2/12/

1

)2(

1
)( µµ −Σ−− −

Σ
= xx

d

T

e
pi

xp                   (4 ) 

For the bivariate case d=2, x is 2D vector µ is the mean 
vector and Σ  is the 2x2 covariance matrix. The parameters µ 
and Σ can be estimated either using Bayesian estimation or 
Maximum Likelihood (ML) estimation. Using the N training 

samples { }Nxxx ......., 21=χ  randomly drawn the mean and 

the covariance matrix are given by ML estimation as  
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 Where µ̂ and Σ̂ are the estimated mean vector and 

covariance matrix respectively. µ̂  is an unbiased consistent 

estimate of the mean vector. Σ̂ is divided by N-1 and not N in 

order to make the covariance matrix unbiased estimate. Also 
the covariance matrix estimate is consistent.  

Figure 3 shows the plot of the original and the estimated 
PDF for N=500. It can be seen that the PDF is not the same as 
the original PDF except in  the mean and covariance sense. 
This is because our basic assumption of  modeling the 
distribution as a single bivariate Gaussian is  not sufficient.  

 
Figure3 Original and Estimated PDF using ML estimation 
 
Figure 4 shows the Kullback-Leibler distance as a function 

of  N for 500 test points(i.e. M=500). So increasing N beyond 
300 does not help much as our model is essentially flawed. 
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Figure 4 Plot of D Vs N for ML estimation for M=500 

IV. NON PARAMETRIC METHODS  

1.Histogram 

In this approach the entire image is divided into a small number 
of bins and using the training samples { }Nxxx ......., 21=χ  

the PDF is calculated as a histogram. This is a very direct and 
simple approach and once the PDF is estimated the training 
data can be discarded. The disadvantage is that we may lose 
some information and also it is computationally expensive in 
higher dimensions. The bin width M has to be chosen 
optimally. If M is too large we get a spiky PDF or if M is too 
small there will be significant loss in structure. Figure 5 shows 
D as a function of bin size for different N. Using this to decide 
the bin size does not make sense as we are evaluating only 
where the original PDF is not zero. For our case as we increase 
the bin size since our original distribution is uniform as bin size 
increases D decreases which may not be the case for any 
general PDF. The only thing we can conclude is that as N 
increases we get better estimates. Figure 6 shows the estimated 
PDF for M=4, N=1000. 

 

Figure 5 bin size vs. Kullback-Leibler distance for different N 
for a Histogram based PDF estimator (500 test points) 

 

Figure6. Histogram estimation for bin size 10 and N=1000 

2.Principled approach 
 
A more principled version of the histogram can be formulated 
.Given N training samples { }Nxxx ......., 21=χ  let K samples 

lie inside a region R of volume V. Then the PDF at any point 
inside the region R is given by  NVKxp /)( = . Kernel 

based methods fix V and find K. K nearest neighbor method 
fixes K and finds V. The advantage is that these methods do 
not have the ‘Curse of dimensionality’. However we need to 
keep all data to evaluate the PDF. 
 
2.1 Kernel based methods 
In this  method we fix the volume of the region R as V and vary 
K the estimated PDF at any point x  is given by 

d
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∑
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)(ˆ                                                      (6) 

where H(x) is the kernel function. In this case H(x) is  a 
hypercube of length h centered at nx  defined as  

=
−

)(
h

xx
H n   1 if x falls inside the hypercube centered at   

nx  and height h, 0 otherwise. The hypercube is basically a 

discontinuous kernel. Instead of the hypercube we can chose a 
Gaussian kernel. The variance s of the Gaussian kernel and h 
the height of the hypercube are the smoothing parameters. The 
smoothing parameters are to be optimally chosen. If the 
smoothing parameter is too low then the PDF is very patchy 
and N has to be very large to get a good estimate of the PDF. If 
the smoothing parameter is very large then the PDF spreads 
out. 
 
 Figure 7 shows the Kullback-Leibler distance for square kernel 
as a function of h for different N for M=500 test points. As can 
be seen from the plot initially D decreases up till a certain point 
reaches a minimum and then again increases. The part where D 
decreases (i.e. better estimate) is when the squares have 
enough width to overlap and give a better estimate. From the 
plot it can be seen that for N=600 the optimal value of is 
around 4 to 6. Figure 8 shows the estimated PDF and the 
original PDF for N=600 h=6 for a rectangular kernel. 
 
Figure 9 shows the Kullback-Leibler distance for the Gaussian 
kernel as a function of the variance s for different N for 800 test 
points. As can be seen from the plot that D decreases as the 
smoothing parameter increases till a certain point and after that 
it increases again. From the plot it can be seen that the optimal 
value for s  is 2.  Also as N increases the curves shift 
downwards which is straightforward that as the number of 
training samples increases we get a better estimate of the PDF.  
. Figure 10 shows the estimated PDF for N=500 and s =2 for the 
Gaussian kernel.  
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 Figure 7 Plot of height vs. Kullback-Leibler distance for 
different N for a rectangular kernel based PDF estimator based 
on 500 test points 

 
Figure 8 Estimated PDF using rectangular kernel based method 

for N=600 and h=6 

 
 

Figure 9 Plot of sigma vs. Kullback-Leibler distance for 
different N for a Gaussian kernel based PDF estimator based on 

800 test points  
 

 
Figure 10 Estimated PDF using Gaussian kernel based method 

for N=500 and sigma=2 
 
 

2.2 K  Nearest Neighbor 
 
In this method V is fixed and K is varied. Essentially we need to 
search the K nearest neighbors. In this case K has to be 
optimally chosen for a good estimate of the PDF. Figure 11 
shows the Kullback-Leibler distance  as a function of  K for  
different N and M=200 test points. Figure 12 shows the 
estimated PDF for N=300 and K=12. 
 

 
 

Figure 11 Plot of K vs. Kullback-Leibler distance for different N 
for a KNN based PDF estimator based on 500 test points  
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Figure 12 Estimated PDF using KNN based method for N=300 
and K=12 

V. SEMI PARAMETRIC METHODS 

These methods combine the flexibility of nonparametric 
methods and the efficiency in evaluation of parametric 
methods. Here we model the PDF as a mixture of parametric 
PDF. The parameters have to be estimated either by some 
optimization technique like gradient descent or Expectation 
Maximization Algorithm. 

1.EM Algorithm 

The EM algorithm convergence properties are studied as a 
function of the number of iterations Figure 13 shows the  
Kullback-Leibler distance for 500 training samples and 500 test 
points for different M(number of mixture components) as a 
function of the iteration number. It can be seen that the EM 
algorithm converges in three to six iterations. Also D decreases 
as M increases. 
 

 
 
Figure 13 Kullback-Leibler distance for N=500 and 500 test 
points for different M (number of mixture components) as a 
function of the iteration number. 
 

 
Figure 14 shows the Kullback-Leibler distance for 
M=10(component densities) and 500 test points  for different N 
as a function of the iteration number. Increasing N has no 
effect on the speed of convergence however as N increases 
the Kullback-Leibler distance decreases. 
 

 
Figure 14 Kullback-Leibler distance for M=10 and 500 test 
points for different N as a function of the iteration number 
 
Figure 15 shows the log likelihood for N=500 and 500 test 
points as a function of the iteration number for different M. 
The log likelihood increases from the point where it starts to 
converge. 
 

 
 
Figure 15 log likelihood for N=500 and 500 test points  as a 
function of the iteration number for different M. 
 
The EM algorithm also depends on the initialization strategies 
which in turn affect the number of iterations required to 
converge. If the initial points are within the uniform region of 
the PDF them the EM algorithm will converge very fast. Mostly 
it was observed that the EM algorithm invariant to initialization 
strategies converged in 5 to 10 steps. Figure 16 shows the 
initial and the final position of the Gaussians. 
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Figure 16 initial Gaussians and the final positions of the 
Gaussians after 5 iterations and the Estimated PDF for M=10 
components N=500 
 
2. Gradient Descent Optimization 
 
The negative log likelihood function can be minimized by 
gradient descent method. The minimization is with respect to 
the parameters the mean, variance of the initial Gaussians and 

the mixing parameters. The descent rate for each of the 
parameters is got after trial and error approach. In this case 
alpha for mean was used as 0.9 for sigma 0.3 and 0.1 for the 
mixing parameters. 
 
Figure 17 shows Kullback-Leibler distance for N=500 and 500 
test points  for different M (number of mixture components) as 
a function of the iteration number. As can be seen from the 
plot the PDF converges after around 25 iterations. The 
convergence is very slow as compared to the EM algorithm. 
Also convergence is very sensitive to the descent rate. The 
descent rate for mean, variance and mixing parameters were 
chosen by trail and error. By properly choosing the descent 
rate I guess we can get a faster convergence. 

 
 
Figure 17 Kullback-Leibler distance for N=500 and 500 test 
points for different M (number of mixture components) as a 
function of the iteration number 
 
Figure 18 shows the Kullback-Leibler distance for M=10 and 
500 test points  for different N as a function of the iteration 
number 

 
 
Figure 18 Kullback-Leibler distance for M=10 and 500 test 
points for different N as a function of the iteration number. 
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Figure 19 shows the log likelihood for N=500 and 500 test 
points as a function of the iteration number for different M. 
The log likelihood increases from the point where it starts to 
converge. 
 

 
Figure 20 Estimated PDF for M=10 components N=500 
 
Note the EM algorithm gives a better PDF than gradient 
descent for the same number of components. 

VI. CONCLUSION 

Use kernel based method for minimizing the computational 
requirements (but we have to keep the data) and use EM 
algorithm. For minimizing both memory and computational 
requirements. 

VII. EXTRA CREDIT II 

The following section discusses the application of the EM 
algorithm for binary sequence estimation. Consider a system 
shown in the Figure 21. B is a binary sequence of length N. 
B=[b1,b2,…..bN] where each bi    could be a one or zero. A 
typical realization for N=5 could be [1 0 0 1 0 1]. The binary 

sequence is scaled by a fixed unknown non zero scalar c. it is 
then corrupted by additive white Gaussian noise. 

 
Figure 21. A simple channel with scaling and noise added. 
 
So we have  
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Each of the z i  are i.i.d. Gaussian random with zero mean and 

variance s  i.e. ( )2,0;~ σii zNz . The problem is to get an 

ML estimate of B. Note that c is unknown. The ML estimation 
problem can be formulated as follows. 
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So the ML estimator is  
01)0/()1/( // ===≥= iiiibyiiby belsebbypbypif

ii

Simplifying we get the following. 
012/ ==≥ ii belsebcyif  Here the value of c is 

unknown even though if it is a fixed quantity.  
 
We can use the EM algorithm by defining a new completes 
data  X=(Y,C). The E step gives estimates of C which can be 
used in the M step. 
 
E STEP:Let D be some estimate of B 
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Dj  =0     provides no information about c. Let D| the subset of D 
which are 1 and let Y|

 be the corresponding Y. So the E step 
can be summarized as follows 
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Y|
      is the subset of Y values asssciated with the current 

estimates of B which are 1’s. 
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M STEP: Find B to maximize this . We can maximize each 
individual term. Consider a typical term we have  

1)( 22 =−≥−− new
jj bifyay  

So the M step is, 
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ALGORITHM: 
1.Initialize Bold  = [ 1 1 ……….1] 
2.E step:  a=E[Y| ] where Y| is the subset of Y associated with 
the current estimates of B which are 1’s. 

3.M step:   For each jb , jy  belonging to Bold and Y , 
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4.Iterate till convergence. 
 
SIMULATION: Simulation was done for the case for N=1000. 
c=3. The algorithm converged in about 2 to 3 iterations. 
Convergence was decided when there was no further 
improvement in the value of estimated c. Figure 22 shows the 
error in the estimation of B as a function of iteration number for 
different s. It can be seen that it converges in about 2 to 3 
iterations.  Figure 23. shows the estimated value of c as a 
function of iteration number for s=1. 

 
Figure 22. Error in the estimation of B as a function of iteration 
number for different s. 

 
Figure 23. Estimated value of c for sigma =1 as a function of 
iteration number 
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