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Probability Density Function Estimation by
different Methods

Vikas Chandrakant Raykar

Abstract— The aim of the assignment was to estimate the
probability density function (PDF) of any arbitrary distribution
from a set of training samples. PDF estimation was done using
parametric (Maximum Likelihood estimation of a Gaussian
model), non-parametric (Histogram, Kernel based and K-
nearest neighbor) and semi-parametric methods (EM algorithm
and gradient based optimization). Application of EM algorithm
for binary sequence estimation has also been discussed.

[. INTRODUCTION

Bayesian approach towards pattern classification

consists of feature extraction and classification. Feature

extraction involves the extraction of a lower dimensional
feature vector from te pattern. Once the feature vector is
extracted the pattern can be classified based on Bayes decision
rule. nsider a C class problem. Let X be afeature vector
extracted from the given input pattern. The decision rule can be
stated as

Dedide C, if P(C,/X)>Pp(C, /X) "j* k (1)

The posterior probability can be calculated using the Bayes
theorem as follows

P(Cy /Xx) = p(x/C,) p(C,)/ p(X) v

.So the important part isthe evaluation of the class conditional
density p(X/C,) for al the C classes. This is the training
phase where we have a set of N feature vectors also called
training samples C :{Xl,xz ....... XN} belonging to class
C, and we estimate P(X/C,) given the N training samples.
This has to be done for all the classes. To ease notation
p(x/C,) isreferred as p(X) . Rest of the discussion will be
with respect to one class only.

The different methods for PDF estimation can be classified as
Parametric, Non-Parametric and Semi parametric. In parametric
method the PDF is assumed to be of a standard form (generaly
Gaussian, Raleigh or uniform). The parameters of the assumed
PDF can be estimated either using ML estimation or Bayesian
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Estimation. The non parametric methods include histogram
based, the kernel based methods and the K nearest neighbor
methods. In semi parametric methods the given density can be
modeled as a combination of known densities. The parameters
can be estimated either using gradient descent or Expectation
Maximization (EM) agorithm.

Section 1l discusses the example used to compare the
various PDF estimation techniques and also the performance
measure used. Section |1, 1V, V discusses the parametric, non
parametric and semi parametric techniques respectively.
Section VI concludes. Section VII discusses the application of
EM algorithm for binary sequence estimation.

Il. PROGRAM DETAILS

A 2 dimensional feature vector was used in the program.
Figure 1 show the origina density function used. The
brightness of the pixel corresponds to the density value at that
point. In our case the density function is uniform in the white
region. We would like to estimate the density from a set of N
training samples drawn from it. The training samples were
drawn from a uniform distribution over the entire range of the
image and the sample was retained if it belonged to the white
region or else discarded. In this way N random training
samples were drawn

Figure 1 Plot of original pdf’s used

A GUI was written in MATLAB 6.1 to estimate the PDF from
these N samples using different methods. Figure 2 shows a
snapshot of the GUI. Once the PDF was estimated the method
was evaluated using the Kullback-Leibler distance. The
performance was evaluated as follows. First we draw M

samples from the image called as X, . The PDF is evaluated at
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each of the M points  Pg (X). Let P(X) be the original
PDF then the Kullback-Leibler distance. D is defined as

[¢]
D=a p(x) IN(p(X)/ Peva (X)) ®
Xeest
Although D does not satisfy the triangle inequality and is
therefore not a true metric, it satisfies many important
mathematical properties. For example, it is a convex function of

Poa (X) , is dways nonnegative, and equals zero only if
Peva (X) = P(X) .For iterative algorithms, D was plotted as
a function of the iteration number. Whenever P, (X) was

zero D was evaluated by setting Pg,, (X) to a very small

value. Also it does not make sense to use this measure to
compare different methods as we are choosing the test points
only where the original PDF is not zero. Like in ML estimation
we may get a good estimate in the region where the original
PDF is not zero however where the PDF goes zero the estimate
is very bad (though we are not considering regions where the
original PDF is not zero). However this measure will be useful
to study the effect of changing the parameters of a given
method.
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Figure 2 A snapshot of the GUI

I1l. PARAMETRIC ESTIMATION
In parametric estimation the the PDF is assumed to have a
known distribution. In our case a standard bivariate Gaussian
was used. The standard multivariate Gaussian has the
following form

1 - xm)T S (x-m
p(x) = HEem S eem @)

- /
(2 pl)d/2|S|l 2
For the bivariate case d=2, Xis 2D vector u is the mean
vector and S is the 2x2 covariance matrix. The parameters P

and S can be estimated either using Bayesian estimation or
Maximum Likelihood (ML) estimation. Using the N training

samplesC = {Xl, ) TP XN} randomly drawn the mean and

the covariance matrix are given by ML estimation as
.18
m——a X;
=1

oy ®
S=—— 3 (x.- M (x - A
N_lja:l(, ) (X, - M

Where Mand S are the estimated mean vector and
covariance matrix respectively. [T is an unbiased consistent

estimate of the mean vector. S is divided by N-1and not N in

order to make the covariance matrix unbiased estimate. Also
the covariance matrix estimate is consistent.

Figure 3 shows the plot of the original and the estimated
PDF for N=500. It can be seen that the PDF is not the same as
the original PDF except in the mean and covariance sense.
This is because our basic assumption of modeling the
distribution as asingle bivariate Gaussian is not sufficient.
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Figure3 Original and Estimated PDF using ML estimation

Figure 4 shows the Kullback-Leibler distance as a function
of N for 500 test points(i.e. M=500). So increasing N beyond
300 does not help much as our model is essentially flawed.
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Figure4 Plot of D VsN for ML estimation for M=500

IV. NON PARAMETRIC METHODS
1.Histogram

In this approach the entire image is divided into a small number
of bins and using the training samples C = {Xl, ) GRS XN}

the PDF is calculated as a histogram. Thisis avery direct and
simple approach and once the PDF is estimated the training
data can be discarded. The disadvantage is that we may lose
some information and also it is computationally expensive in
higher dimensions. The bin width M has to be chosen
optimally. If M is too large we get a spiky PDF or if M is too
small there will be significant loss in structure. Figure 5 shows
D as afunction of bin size for different N. Using thisto decide
the bin size does not make sense as we are evaluating only
where the original PDF is not zero. For our case as we increase
the bin size since our original distribution is uniform ashin size
increases D decreases which may not be the case for any

general PDF. The only thing we can conclude is that as N

increases we get better estimates. Figure 6 shows the estimated
PDF for M=4, N=1000.
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Figure 5 bin size vs. Kullback-Leibler distance for different N
for a Histogram based PDF estimator (500 test points)
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Figure6. Histogram estimation for bin size 10 and N=1000
2.Principled approach

A more principled version of the histogram can be formulated
.Given N training samples C = {Xl, ) O XN} let K samples
lieinside aregion R of volume V. Then the PDF at any point
inside the region R is given by p(X) =K/NV . Kernel
based methods fix V and find K. K nearest neighbor method
fixes K and finds V. The advantage is that these methods do

not have the ‘Curse of dimensionality’. However we need to
keep al datato evaluate the PDF.

2.1 Kernel based methods
In this method we fix the volume of the region R asV and vary
K the estimated PDF at any point X isgiven by
&L X=X,
a H( ™ )
A =1
p(X)="——F— ©6)
Nh*
where H(x) is the kernel function. In this case H(x) is a
hypercube of length h centered at X, defined as

X_
H( Xn) = 1if x fals inside the hypercube centered at
h

X, and height h, O otherwise. The hypercube is basically a

discontinuous kernel. Instead of the hypercube we can chose a
Gaussian kernel. The variance s of the Gaussian kernel and h
the height of the hypercube are the smoothing parameters. The
smoothing parameters are to be optimally chosen. If the
smoothing parameter is too low then the FDF is very patchy
and N hasto be very large to get agood estimate of the PDF. If
the smoothing parameter is very large then the PDF spreads
out.

Figure 7 shows the Kullback-L eibler distance for square kernel

as a function of h for different N for M=500test points. As can
be seen from the plot initially D decreases up till a certain point
reaches a minimum and then again increases. The part where D
decreases (i.e. better estimate) is when the squares have
enough width to overlap and give a better estimate. From the
plot it can be seen that for N=600 the optimal value of is
around 4 to 6. Figure 8 shows the estimated PDF and the
original PDF for N=600 h=6 for arectangular kernel.

Figure 9 shows the Kullback-Leibler distance for the Gaussian
kernel asafunction of the variance s for different N for 800 test
points. As can be seen from the plot that D decreases as the
smoothing parameter increases till a certain point and after that
it increases again. From the plot it can be seen that the optimal
value for s is 2. Also as N increases the curves shift
downwards which is straightforward that as the number of

training samplesincreases we get a better estimate of the PDF.

. Figure 10 shows the estimated PDF for N=500 and s =2 for the
Gaussian kernel.
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Figure 7 Plot of height vs. Kullback-Leibler distance for  Figure 10 Estimated PDF using Gaussian kernel based method
different N for arectangular kernel based PDF estimator based for N=500 and sigma=2
on 500 test points

2.2 K Nearest Neighbor

Original PDF Estimated PDF Inthismethod V isfixed and K isvaried. Essentially we need to
search the K nearest neighbors. In this case K has to be
optimally chosen for a good estimate of the PDF. Figure 11
shows the Kullback-Leibler distance as a function of Kfor
different N and M=200 test points. Figure 12 shows the
estimated PDF for N=300 and K=12.
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Figure 8 Estimated PDF using rectangular kernel based method
for N=600 and h=6
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Figure 9 Plot of sigma vs. Kullback-Leibler distance for
different N for a Gaussian kernel based PDF estimator based on
800 test points
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Estimated PDF

Original PDF

Figure 12 Estimated PDF using KNN based method for N=300
and K=12

V. SEMI PARAMETRIC METHODS

These methods combine the flexibility of nonparametric
methods and the efficiency in evaluation of parametric
methods. Here we model the PDF as a mixture of parametric
PDF. The parameters have to be estimated either by some
optimization technique like gradient descent or Expectation
M aximization Algorithm.

1.EM Algorithm

The EM algorithm convergence properties are studied as a
function of the number of iterations Figure 13 shows the
Kullback-Leibler distance for 500 training samples and 500 test
points for different M(number of mixture components) as a
function of the iteration number. It can be seen that the EM
algorithm convergesin threeto six iterations. Also D decreases
as M increases.
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Figure 13 Kullback-Leibler distance for N=500 and 500 test
points for different M (number of mixture components) as a
function of the iteration number.

Figure 14 shows the Kullback-Leibler distance for
M=10(component densities) and 500 test points for different N
as a function of the iteration number. Increasing N has no
effect on the speed of convergence however as N increases
the Kullback-L eibler distance decreases.
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Figure 14 Kullback-Leibler distance for M=10 and 500 test
points for different N as afunction of the iteration number

Figure 15 shows the log likelihood for N=500 and 500 test
points as afunction of the iteration number for different M.

The log likelihood increases from the point where it starts to
converge.
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Figure 15 log likelihood for N=500 and 500 test points as a
function of the iteration number for different M.

The EM algorithm also depends on the initialization strategies
which in turn affect the number of iterations required to
converge. If the initial points are within the uniform region of
the PDF them the EM algorithm will converge very fast. Mostly
it was observed that the EM agorithm invariant to initialization
strategies converged in 5 to 10 steps. Figure 16 shows the
initial and the final position of the Gaussians.
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Estimated PDF

Figure 16 initiadl Gaussians and the final positions of the
Gaussians after 5 iterations and the Estimated PDF for M=10
components N=500

2. Gradient Descent Optimization
The negative log likelihood function can be minimized by

gradient descent method. The minimization is with respect to
the parameters the mean, variance of the initial Gaussians and

the mixing parameters. The descent rate for each of the
parameters is got after trial and error approach. In this case
alpha for mean was used as 0.9 for sigma 0.3 and 0.1 for the
mixing parameters.

Figure 17 shows Kullback-Leibler distance for N=500 and 500
test points for different M (number of mixture components) as
a function of the iteration number. As can be seen from the
plot the PDF converges after around 25 iterations. The
convergence is very slow as compared to the EM agorithm.
Also convergence is very sensitive to the descent rate. The
descent rate for mean, variance and mixing parameters were
chosen by trail and error. By properly choosing the descent
rate | guess we can get afaster convergence.
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Figure 17 Kullback-Leibler distance for N=500 and 500 test
points for different M (number of mixture components) as a
function of the iteration number

Figure 18 shows the Kullback-Leibler distance for M=10 and
500 test points for different N as a function of the iteration
number
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Figure 18 Kullback-Leibler distance for M=10 and 500 test
points for different N as afunction of theiteration number.
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Figure 19 shows the log likelihood for N=500 and 500 test
points as afunction of the iteration number for different M.
The log likelihood increases from the point where it starts to
converge.

Estimated PDF

Figure 20 Estimated PDF for M=10 components N=500

Note the EM algorithm gives a better PDF than gradient
descent for the same number of components.

VI. CONCLUSION

Use kernel based method for minimizing the computational
requirements put we have to keep the data) and use EM
algorithm. For minimizing both memory and computational
requirements.

VII. EXTRA CREDIT I

The following section discusses the application of the EM
algorithm for binary segquence estimation. Consider a system
shown in the Figure 21. B is a binary sequence of length N.
B=[by,b,,.....oy] Where each i  could be a one or zero. A
typical redization for N=5 could be [1 0 0 10 1]. The binary

sequence is scaled by a fixed unknown non zero scalar c. it is
then corrupted by additive white Gaussian noise.

C

N Y

Figure 21. A simple channel with scaling and noise added.
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Each of the z; arei.i.d. Gaussian random with zero mean and
variance s ie. z ~ N(Zi :0,s 2). The problem is to get an

ML estimate of B. Note that ¢ is unknown. The ML estimation
problem can be formulated as follows.

iN(yi;O,s 2)when b =0
Py w(Yi /) =] ( _ 2) _
f Nlyi;c,s whenb =1
So the ML estimator is
if pyi/b(yi/bl =13 pyi/b(yi/bl =0) b =1dsebh =0
Simplifying we get the following.
if y3c/2 b =1eélseb =0 Here the value of c is

unknown even though if it isafixed quantity.

We can use the EM algorithm by defining a new completes
data X=(Y,C). The E step gives estimates of C which can be
used in the M step.

E STEP:Let D be some estimate of B

Q(B/D)=Elog pycia(y.c/B)/Y,D]

pY,C/B(y’C/B): pY/c,B(y/CvB)
cis not a random var iable

N
Py,ce(y/c,B) = O

k=1

N (ye;cb,,s ?)
Smplifyin g,
Q(B /D)

N
El[-a (y; - cbj)zlY,D]
j=1
N

- a
=

j=1

Q(B /D) (y,- E[c/Y,D]b,)?

D, provides no information about c. Let D'the subset of D
which are 1 and let Y be the corresponding Y. So the E step
can be summarized asfollows
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let E[C/Y,D]=E[Y']=a

\'% is the subset of Y values asssciated with the current
estimates of B whichare 1's.

Q(B/D)=-a (y, - &))"
j=1

M STEP: Find B to maximize this . We can maximize each
individual term. Consider atypical term we have

- (y - a)?3-yrif b =1
Yi y i
SotheM stepis,
For each b?ld , y?ld belongingtoBand Y ,

if (a>0and y; >a/2)or (a<0and y; <a/2)
set b]™ =1otherwisesetb™ =0

ALGORITHM:

LinitidizeB* =[11.......... 1

2.E step: a=E[Y'] where Y' is the subset of Y associated with
the current estimates of B whichare1's.

3.M step’ For each b, , y; belongingto B*and Y,

if (a>0and y; >a/2)or (a<0and y; <a/2)
set b]™ =1otherwisesetb™ =0

4.|teratetill convergence.

SMULATION: Simulation was done for the case for N=1000.
c=3. The agorithm converged in about 2 to 3 iterations.
Convergence was decided when there was no further
improvement in the value of estimated c. Figure 22 shows the
error in the estimation of B as afunction of iteration number for
different s. It can be seen that it converges in about 2 to 3
iterations. Figure 23. shows the estimated value of ¢ as a
function of iteration number for s=1.
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Figure 22. Error in the estimation of B as a function of iteration
number for different s.
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Figure 23. Estimated value of ¢ for sigma =1 as a function of
iteration number
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