
Fast Kernel Principal Component
Analysis(KPCA) for the Polynomial

and Gaussian kernels
Vikas Chandrakant Raykar, Ankur Ankur

Perceptual Interfaces and Reality Laboratory
Institute for Advanced Computer Studies

University of Maryland, College Park

February 1, 2003

1. Principal Component Analy-
sis(PCA)

• PCA is a statistical dimensionality reduction technique. Given
N points in d dimensions PCA essentially projects the data
points onto p, directions(p < d)which capture the maximum
variance of the data.

• These directions correspond to the eigen vectors of the covari-
ance matrix of the training data points.

• Intuitively PCA fits an ellipsoid in d dimensions and uses the
projections of the data points on the first p major axes of the
ellipsoid.

Let αnm be the projection of the nth data point on the mth basis em.
Using these projections and the basis functions we can reconstruct
a cth order approximation of xn as

x̂n =

c∑
m=1

αnmem

E = [e1e2......ec]

αT
n = [αn1αn2......αnc]

Then x̂n can be written as

x̂n = Eαn

min
E,αn

1

2

N∑
n=1

‖xn − Eαn‖2

subject to the constraint that ETE = I . This function can be
minimized by forming using the method of Lagrange multipliers.

αk = ETxk (1)

and E is got by solving the eigen value problem

SE = EΛ (2)

where S is the covariance matrix

S =

N∑
n=1

xnx
T
n (3)

1. Subtract the mean from all the data points xn ← xn −
1
N

∑N
i=1 xi

2. Compute the covariance matrix S =
∑N

n=1 xnx
T
n

3. Diagonalize S to get its eigen values and eigen vectors i.e get
E and Λ.

4. Retain c eigen vectors corresponding to c largest eigen values

such that
∑c

j=1 λj∑N
j=1 λj

equals the desired variance to be captured.

5. Project the data points on the eigen vectors αn = ET (xk −
1
N

∑N
i=1 xi) and use the projections instead of the data points.

PCA-Alternate approach There are some applications where we
have a few samples of very high dimensions(Face recognition). In
such cases where N < d we can formulate the problem in terms of
an N ×N matrix called as the dot matrix.

X = [x1x2......xN]

According to our previous formulation for one eigen value we have
to solve

Se = λe

XXTe = λe

XTXXTe = λXTe

Kα = λα (4)

where K = XTX is called as the dot product matrix and α = XTe.

XTe = α

XXTe = Xα

Se = Xα

λe = Xα

e =
1

λ
Xα (5)

Therefore e lies in the span of X the data points. Normalizing e

‖e‖2 = 1

‖Xα‖2 = 1

αTXTXα = 1

αTKα = 1

αTλα = 1

‖α‖2 =
1

λ
(6)

Finally the principal components can be written as where y is the
projection of x on e

y = eTx

y = αTXTx

y =

N∑
i

αi〈xi.x〉 (7)

One thing to be noted is that we do not need e explicitly(we need
only the dot product).

Two dimensional toy example illustrating PCA

PCA is linear

• It uses only second order statistics in the form of covariance
matrix.

• The best it can do is to fit an ellipsoid around the data.

• Kernel Principal Component Analysis(KPCA) is an attractive
method for extracting nonlinear features from a given set of
multi variate data.

• While Principal Component Analysis(PCA) finds the best ellip-
soidal fit for the data KPCA has the capability of extracting the
nonlinear features which could be a more natural and compact
representation of the data.

2. Kernel Principal Component Anal-
ysis(KPCA)

• The essential idea of KPCA is based on the hope that if we
do some non linear mapping of the data points to a higher
dimensional(possibly infinite) space we can get better non linear
features which are a more natural and compact representation
of the data.

• The computational complexity arising from the high dimension-
ality mapping is mitigated by using the kernel trick.

• KPCA belongs to a class of more general methodology which
use the for algorithms which can be written only in terms of
dot products and not on the variable themselves.

• Consider a nonlinear mapping φ(.) : Rd → Rh from Rd the
space of d dimensional data points to some higher dimensional
space Rh..

• Once we have this mapping KPCA is nothing but Linear PCA
done on the points in the higher dimensional space.

• As of now assume that the mapped data are zero centered(i.e∑N
i=1 φ(xi) = 0). So now in our case the dot product matrix

K becomes
[K]ij = [φ(xi).φ(xj)] (8)

K is called the Gram matrix.

• Solving the eigen value problem Kα = λα gives the corre-
sponding N eigen vectors. Note that the eigen vector needs to
be normalized to satisfy ‖α‖2 = 1

λ
Finally the principal compo-

nent of any data point x, which is the projection of φ(x) on e
is given by

y =

N∑
i

αi〈φ(xi).φ(x)〉 (9)

As mentioned earlier we do not need e explicitly(we need only
the dot product).

The kernel trick basically makes use of this fact and replaces the
dot product by a kernel function which is more easy to compute
than the dot product.

k(x, y) = 〈φ(x).φ(y)〉 (10)

This allows us to compute the dot product without having to carry
out the mapping. The most commonly used kernels are the poly-
nomial, Gaussian and the tanh kernel.
For the more general case where the data is not centered in the
higher dimensional space we will have to use the modified Gram
Matrix(Derivation in the report)

• Given N data points in d dimensions let X = [x1x2.....xN]
where each column represents one data point.

• Subtract the mean from all the data points.

• Choose an appropriate kernel k(., .).

• Form the N ×N Gram matrix [K]ij = [k(xi, xj)].

• Form the modified Gram matrix

K̃ = (I − 1N×N

N
)TK(I − 1N×N

N
)

where where 1N×N is an N × N matrix with all entries equal
to 1

• Diagonalize K̃ to get its eigen values λn and eigen vectors αn.

• Normalize αn ⇐ αn√
λn

.

• Retain c eigen vectors corresponding to c largest eigen values

such that
∑c

j=1 λj∑N
j=1 λj

equals the desired variance to be captured.

• Project the data points on the eigen vectors

y = αT (I − 1N×N

N
)(


k(x1, x)

.

.

.
k(xN , x)

−K
1N×1

N
)

where 1N×1 is an N × 1 matrix with all entries equal to 1. and
use the projections instead of the data points.

3. Different Kernels

• The polynomial kernel of degree d is given by

k(x, y) = (x.y + c)d (11)

• The Gaussian or the radial basis function kernel is given by

k(x, y) = exp(−‖x− y‖2

2σ2
) (12)

where the parameter σ controls the support region of the kernel.

• The tanh kernel which is mostly used in Neural network type
application is given by

k(x, y) = tanh((x.y) + b) (13)

Two dimensional toy example illustrating KPCA

Two dimensional toy example illustrating KPCA

4. Computational Complexity of
KPCA

• The Gram matrix is an N × N matrix and finding the eigen
values and eigen vectors is of O(N 3) complexity.

• Also the memory storage is of O(N 2)

• However in most applications all the eigen vectors are not
needed. The number of eigen vectors needed is usually << N .
In such cases we can use iterative methods to compute the
eigen vectors and the eigen values and the complexity becomes
O(N 2).

• O(N 2) complexity to compute the kernel principal components.

5. Iterative methods for Eigen value
Problems

• Power Iteration

• Inverse iteration

• Rayleigh Quotient Iteration

• Deflation

• Subspace Iteration

• Krylov Subspace methods Reduce matrix to Hesenberg form
using only matrix vector multiplication. These methods are
based on the porjection methods onto Krylov subspaces. The
three most important methods in this class are Arnoldi Iteration,
Lanczos Iteration and the Jacobi Iteration.

6. Lanczos iteration

The Gram matrix in our case is real symmetric. The most com-
monly used method for Hermitian matrices is the Lanczos algorithm
which is basically a version of Arnoldi’s iteration for Hermitian ma-
tricies.

Start Choose an initial vector v1 of norm unity. Set β1 = 0, v0 = 0

Iterate for j = 1, 2,k do

wj = Avj − βjvj−1

αj = (wj, vj)

wj = wj − αjvj

βj+1 = wj2

vj+1 = wj/βj+1

(14)

• αj and βj are the diagonal and the subdiagonal entries of sym-
metric tridiagonal matrix Tk.

• Lanczos method does not produce the eigen values directly but
produces the tridiagonal matrix Tk whos eigen values and eigen
vectors are to the determined by some other method.

• In general if only a few eigen values are needed Tk is a very
small matrix as compared to the original matrix and can be
diagonalized directly.

• The above algorithm gurantees that the vectors vi are orthog-
onal. However in reality exact orthogonality of these vectors is
observed only at the beginning of the process.

• The problem can be overcome by reorthogonalizing the vectors
as needed or do some partial or selective orthogonalization.

Lanczos Iteration

• Lanczos iteration provides a good approximation for the ex-
treme eigen values and they require only one matrix-vector mul-
tiplication per step.

• Also most of the commercially available software have of the
option of providing the function which does the matrix-vector
product.

• So we can write a fast efficient matrix-vector multiplication
code which can effectively fasten up the iterative procedure.

7. Polynomial kernel

v = Ku where [K]ij = [k(xi, xj)] for the polynomial kernel of order
p k(x, y) = (x.y + c)p i.e we want to evaluate vi for i = 1.....N

vi =

N∑
j=1

k(xi, xj)uj

vi =

N∑
j=1

(xi.xj + c)puj

vi =

N∑
j=1

uj

p∑
k=0

(
p
k

)
(xi.xj)

kcp−k

vi =

p∑
k=0

(
p
k

)
cp−k

N∑
j=1

uj(xi.xj)
k

Using the compress operator

vi =

p∑
k=0

(
p
k

)
cp−k

N∑
j=1

ujcomp(xk
i).comp(xk

j)

vi =

p∑
k=0

comp(xk
i).[

N∑
j=1

uj

(
p
k

)
cp−kcomp(xk

j)]

vi =

p∑
k=0

comp(xk
i).Ak

where

Ak =

N∑
j=1

uj

(
p
k

)
cp−kcomp(xk

j)

8. Gaussian kernel

9. Other Applications

Same idea can be extended to other machine learning algorithms
like Kernel Linear Discriminant Analysis(KLDA), Kernel Biased Dis-
criminant Analysis(KBDA), Kernel Independent Component Anal-
ysis(KICA) etc.

10. Conclusions

A fast method for diagonalizing the Gram matrix using iterative
techniques.

	Principal Component Analysis(PCA)
	Kernel Principal Component Analysis(KPCA)
	Different Kernels
	Computational Complexity of KPCA
	Iterative methods for Eigen value Problems
	Lanczos iteration
	Polynomial kernel
	Gaussian kernel
	Other Applications
	Conclusions

