
PDMA Toolkit1

Aditya Kalyanpurg Vikas Raykarg Sadagopan Srinivasanz

Department of Computer Science
g
, Department of Electrical Engineering

z
,

University of Maryland, College Park

1 This report was written as part of the course project for CMSC 714: High Performance Computing Fall 2003 offered by Dr. Jeff

Hollingsworth

ABSTRACT
In this report, we present PDMA – Papi Dyninst Memory
Analysis Toolkit that can be used to test programs for memory
bottlenecks such as cache misses. The tool uses underlying
hardware counters supported by existing machines to monitor
memory-specific events and patches the runtime code of the
program in order to monitor these events. The performance
analysis results are displayed using histograms and stacked
bar charts that are hyperlinked with the original source code.
We use our tool to conduct tests on specific benchmarks such
as Parkbench and FFT that successfully demonstrate its
application utility. We present the results of these tests,
highlight key factors and implications, and suggest future
plans for research.

1. Introduction
Most of the modern computer systems have deep memory
hierarchies. As a result, very often, significant performance
improvements can be obtained by restructuring the code either
in terms of the data layout or the way the program is written.
Hence a tool, which can pinpoint the memory bottlenecks
accurately in terms of lines in the source code, would be very
beneficial for the programmer. Once the memory bottleneck
has been identified, the programmer can make use of the
knowledge of the memory hierarchy to restructure the code.

There are two ways in which a memory bottleneck can be
reported. The memory bottleneck can be associated either with
the data or the source code or possibly both. In data based
tools, typically, some metrics are reported for different data
structures (like arrays) in the source code. In source based
method, bottlenecks are reported in terms of actual lines in the
source code. We use the latter methodology in our PDMA
toolkit.

The first step in designing such a tool is to identify the
sources of memory bottlenecks and develop a taxonomy of
memory loss performance metrics. Most modern
microprocessors have two levels of cache (L1 and L2 cache),
although some of them now have three levels. The latency of
data access becomes greater with each level of memory
hierarchy. For example, a typical L1 cache hit could take 2 to 3
cycles whereas a L1 cache miss satisfied by L2 cache hit takes
around 8 to 10 cycles. A L2 cache miss satisfied from the main
memory with no TLB miss takes around 75 to 250 cycles and a
TLB miss requiring the reload of TLB takes around 2000
cycles. In our tool the basic metrics are L1 Instruction cache
miss, L1 Data cache miss (load and store misses). This i s

because in modern microprocessors most of the cache accesses
(almost 90%) are served by the L1 cache and it is the L1 miss
penalty, which constitutes a major overhead in a lot of
applications. Additionally, our tool relates these three metrics
to the program execution time to give a measure of the
significant time lost in each memory bottleneck.

Thus, to summarize, our goal is to isolate and emphasize the
effect of cache misses in the program. For this, our tool needs
to perform the following two tasks:

ß Report the various L1 misses viz., instruction, load
and store misses occurring in each line of the source
code. A histogram is generated which shows the
percentage of the total cache misses caused by that
particular line. This helps in identifying the
Hotspots or memory bottlenecks in the source. We
also wanted to build a GUI which could hyperlink the
histogram to the relevant source code fragment.

ß The second goal was to give an estimate of the
fraction of the total time spent at a line due to each
memory bottleneck. We used a stacked bar chart to
accomplish this as explained in detail in section 3.2.

In order to achieve these goals, one approach is to run the
program using a memory simulator. However simulators are
prohibitively slow to be used as a tool to detect memory
bottlenecks and the accuracy of the performance analysis
results are constrained by the accuracy of the simulator. The
other popular method is software based instrumentation. This
method, if not properly implemented, can inevitably perturb
the execution of the program.

MTool is one such tool which uses low overhead timers and
basic block counting. It augments a program with specific
instrumentation, which perturbs the program’s execution as
little as possible while generating enough information to
isolate memory and synchronization bottlenecks. It estimates
the ideal execution time for a section of code by generating a
CFG of that code, heuristically determines the number of
instructions issued by minimally counting path traversals
along the CFG, and appropriately scales this count using
processor-specific information such as average execution time
per instruction. It then compares this ideal execution value
with the actual measured value to evaluate bottlenecks.

However, this technique suffers from two main drawbacks:

1) The measured execution times are not accurate since they
use system-level software commands to obtain them.

2) The heuristically determined ideal execution times are not
precise, as constrained by their methodology.

Nowadays most processors have a small number of
performance-dedicated special purpose registers called
Hardware Performance counters. This special set of registers
count events, which are occurrences of specific signals and
states related to the processors’ architecture. For example
Pentium IV has as many as eighteen counters, AMD Athlon has
four and UltraSparc II has two. Some processors have more
sophisticated hardware for recording data such as data and
instruction addresses for an event, and pipeline or memory
latencies for an instruction. We use these counters to count
the number of cache misses (instruction and data) that occur
in a given program. Our approach uses PAPI [1] to access the
hardware counters, thereby reporting more accurate execution
times.

Furthermore, we use Dyninst [2] to dynamically insert this
PAPI code into the running binary, thereby allowing any
section of the code to be monitored on the fly. Dynamically
instrumenting the binary avoids parsing and recompilation of
the source code thereby avoiding interference of the
instrumentation with various compiler optimizations.
Moreover this avoids the hassles of statically adding code to
each and every benchmark.

There are two ways of using hardware performance counters.
One is the counting mode to collect aggregate counts of event
occurrences and the second is the statistical sampling mode to
collect profiling data based on counter overflows. In order to
generate the histograms we use the latter approach, which
works as follows: when an event exceeds a threshold, an
interrupt occurs and a signal is delivered with a certain number
of arguments. Among these arguments is the interrupted
thread’s stack pointer and register set. The register set contains
the program counter, the address at which the process was
interrupted when the signal was delivered. Our tool extracts
this address and hashes the value into a specific file. Upon
program completion, the result files are associated with
symbolic information contained in the executable. So we have
a line-by-line account of where the counter overflow occurred
in the program.

The rest of the report is organized as follows: Section 2 briefly
describes the above two API’s we use i.e. PAPI and Dyninst
(while noting our usage experience); Section 3 explains how
they are integrated into the overall architecture and working of
the toolkit; Section 4 reports results on some tested
benchmarks; Section 5 covers some important issues that need
to be addressed with regard to the enhancement of our toolkit;
and Section 6 finally concludes.

2. Components of PDMA: Architecture and
Working
2.1 PAPI
2.1.1 Overview
The Performance API (PAPI) specifies a standard application
programming interface (API) for accessing hardware
performance counters available on most modern
microprocessors.

2.1.2 Usage Experience
ß Initially we tried to setup our entire tool on Linux.

However, installing PAPI on a Linux box requires the

kernel to be patched. Furthermore, patches are not
available for all distributions of Linux. We only
managed to install it on a single isolated machine
with Red Hat Linux 8.0 and this proved cumbersome.
So we decided to work on the Solaris platform
instead and installed it on tau.umiacs.umd.edu where
all of us could have access.

ß PAPI provides two interfaces to the underlying
counter hardware; a simple, high level interface for
the acquisition of simple measurements and a fully
programmable, low level interface directed towards
users with more sophisticated needs. We used the
low level API for our tool.

ß PAPI has the concept of Preset events, also known as
pre-defined events which are a common set of events
deemed relevant and useful for application
performance tuning. These events are typically found
in many CPUs that provide performance counters and
give access to the memory hierarchy, cache coherence
protocol events, cycle and instruction counts,
functional unit, and pipeline status. Not all events
can be measured on all platforms. We wrote a program
which prints out the hardware information and the
available events. For our tool we are mainly
interested in the following events which are available
on UltraSPARC III.

o PAPI_L1_ICM: Level 1 instruction cache
misses

o PAPI_L1_LDM: Level 1 load misses

o PAPI_L1_STM: Level 1 store misses

o PAPI_TOT_CYC: Total Cycles

o PAPI_TOT_INS: Instructions completed

ß The number of hardware events that can be monitored
simultaneously is limited by the number of hardware
counters, which in turn depends on the processor.
The Sun Ultra Sparc processor which we worked on
had two hardware counters. As a result we monitored
two events simultaneously. However, PAPI also
supports multiple events monitoring with
multiplexed counters, but the results are not as
accurate.

ß PAPI 2 provides the ability to call user-defined
handlers when an overflow occurs, which i s
accomplished by setting up a high-resolution
interval timer and installing a timer interrupt
handler. For the systems that do not support counter
overflow at the operating system level, PAPI uses the
signal, SIGPROF, by comparing the current counter
value against the threshold. If the current value
exceeds the threshold, then the user’s handler i s
called from within the signal context with some
additional arguments. These arguments allow the
user to determine which event overflowed, how much
it overflowed, and at what location in the source
code. More specifically there is low level API which
returns the address where an overflow occurred.

ß PAPI 2 can support only one event for the overflow
mechanism. However the latest release PAPI 3-beta
version can support multiple event monitoring.
However the function PAPI_get_overflow_address()

is not available in PAPI 3. Instead there is a
statistical profiling API - PAPI_profil which builds
the histogram. A PC histogram can be generated on
any countable event.

ß On most systems, overflow is emulated in software
by PAPI. Only on the UltraSparc III and IRIX does the
operating system support true interrupt on overflow.
The emulation handler in PAPI runs every
millisecond, therefore values have to be chosen that
will overflow frequently but not too frequently.

ß There is no documentation on stopping the profiling
functions. However one of their FAQ’s says that the
user must call the overflow or the profiling function
with the handler or buffer set to NULL and the
threshold to 0 after having called PAPI stop.

2.2 Dyninst
2.2.1 Overview
The normal cycle of developing a program is to edit source
code, compile it, and then execute the resulting binary.
However, sometimes this cycle can be too restrictive. We may
wish to change the program while it is executing, and not have
to re-compile, re-link, or even re-execute the program to
change the binary. At first thought, this may seem like a
bizarre goal, however there are several practical reasons we may
wish to have such a system. For example, if we are measuring
the performance of a program and discover a performance
problem, it might be necessary to insert additional
instrumentation into the program to understand the problem.

Another application is performance steering; for large
simulations, computational scientists often find i t
advantageous to be able to make modifications to the code and
data while the simulation is executing. Dyninst provides the
ability to insert the code into a running program.

2.2.2 Usage Experience
ß Installing Dyninst on a Linux box requires few

library files to be installed including libdwarf,
which is not available for Linux mandrake. Though
the source code was available for libdwarf, the
compiled code failed for inexplicable reasons.
Though the RPM’s were available for Red Hat, we had
access to only one such machine. Therefore we opted
to install it on tau, which we all had access to and on
which we had successfully installed PAPI
beforehand.

ß Dyninst provides the ability to insert code snippets
at any point in the binary. It also provides the ability
to program using Dyninst functions. Given our
approach, we found it tedious to use these pre-
defined functions to generate the PAPI calls. Instead,
we found it easier to create a library for the necessary
PAPI functions by compiling our PAPI functions
with Dyninst and PAPI libraries.

ß We were interested in the following Dyninst
functions:

o BPatch_function: This function finds the
specific functions in the mutatee where the
user wants to insert the code snippets.

o BPatch_findPoint: This function finds the
exact point (entry/exit) in the function
where the code is inserted.

o insertSnippet: This function inserts the
code snippet in the mutatee at the specified
point.

ß The other major feature of Dyninst which we were
interested in but couldn’t make use of was
bpatch_thread!->isTerminated(). This function i s
used to check the termination status of the mutatee.
We could have potentially used
waitForStatusChange() (which waits until there is a
status change to some thread that has not yet been
reported by either isStopped() or isTerminated() and
returns true) along with the above function but for
the following problem: the mutatee hung every time
this feature was used. A possible explanation for this
behavior was a deadlock between the PAPI library
calls and this specific feature of Dyninst. When a
normal code snippet (not containing any PAPI calls)
was inserted the mutatee worked fine. It would be
helpful if the thread library calls by Dyninst had
more documentation.

ß We also faced an interesting scenario wherein the
mutator caused a segmentation fault whenever i t
found a function in a specific benchmark. We
couldn’t identify the actual reason behind this. We
believe that this was due to an incorrect compilation
procedure or something invalid in the benchmark
code.

ß When using the addr2line command (which
translates an address associated with an executable to
the corresponding source code line), we found that
the translated addresses were those of system library
files and not the actual source code. This problem
was fixed by precluding the following libraries, ”-
lterm -lcurses” from being linked in the compilation
procedure of the mutatee.

3. Integration of PAPI/Dyninst into the
PDMA Model
A high-level architectural view of our system is presented in
Figure 1. The program PAPIProbe.c uses the PAPI API to
monitor user-specified memory related bottlenecks. Dyninst i s
used to patch the runtime process of the test application with
PAPIProbe.c. Currently, the probe is inserted at the start of
execution, and hence the entire program trace is monitored.
However, we can use the Dyninst functionality to insert the
probe into any section of the code as determined by the user.
The probe is used to access special-purpose hardware
counters associated with each memory bottleneck, and when
the counter value exceeds a variable threshold parameter, the
probe dumps the memory address that caused the bottleneck to
a specific file, maintaining a separate count for each address.
Thus for each memory bottleneck, a separate file is dumped
that stores a list of all locations (addresses) that were affected
as a result of the bottleneck along with the number of times i t
was affected. The post-processing scripts (as explained in the
next section) then act on the dumped files in order to reformat
them for the GUI.

Figure 1

3.1 Post-Processing
The post-processing stage consists of two script files, which
take the output dumped by PAPIProbe and reformat them to
make it easier for the GUI to analyze and display. The first
script (Address-to-Line Number) converts each memory
address location (present in the output files dumped by
PAPIProbe) into the corresponding source code and line
number that accessed it (see Figure 1). The second script
parses the output files generated by the first script, removes
redundancies, calculates relative percentages from the absolute
counts and dumps a final set of files for the GUI.

3.2 GUI
3.2.1 Design
The purpose of the graphical user interface is to intuitively
display the performance analysis results obtained in our pre-
processing stage by PAPI and Dyninst. In coming up with
design goals of our GUI, we studied related research tools
(MTool, SvPablo) and arrived at the following essential set of
features that our GUI needed to support:

Task #1: Allow the user to monitor a specific type of memory
bottleneck (say L1 Cache Miss) and observe its impact in the
program intuitively

Solution: The GUI has a drop-down list box from where the
user selects a specific memory-related event to monitor, and a
corresponding histogram is shown highlighting all the
hotspots in the program for that event. Each bar in the
histogram corresponds to a single hotspot (line of code) in the
program and displays the occurrence of the bottleneck at that
line in terms of actual count and relative percentage of the
whole (see Figure 2).

Figure 2

Task #2: Pinpoint exact location of hotspot in terms of actual
source code

Solution: Each hotspot (bar) in the histogram is hyperlinked
with the corresponding source file and line number, which i s
highlighted for the user when clicked. This allows the user to
quickly navigate between cause of problem and its effect.

Task #3: Determine the actual impact of each memory
bottleneck in terms of program execution time

Solution: For a given hotspot, we count the number of
processor cycles consumed by each memory-bottleneck event.
For our calculations, we assume all L1 (instruction and data)
misses to be a L2 hit and use a constant miss penalty of 8
cycles (obtained from the web for the tau architecture, which i s
the SUNW4u sunfire SPARC machine [3]). This is then related
to the total number of cycles issued at that hotspot, thereby
computing the relative percentage of time wasted by each
bottleneck. A stacked-bar chart is used to demonstrate this
effectively (see Figure 3).

Figure 3

3.2.2 Implementation
We use Java as our programming language to implement the
GUI, main reasons being platform independence and the

availability of an open-source API to draw charts. The API we
use is called JFreeChart [4].

In a nutshell, our program titled PDMA.java works as follows:

• It accepts the files dumped by the post-processing
script

• Parses the data accordingly, storing it in appropriate
data structures

• Performs some mathematical calculations
aggregating and relating data from all the monitored
events, and

• Uses the JFreeChart API to construct the histograms.
The API supports different types of charts (line, pie,
histogram etc).

The program is invoked by issuing the following at the
command line prompt:

java -classpath . PDMA.java PAPI_EVENT1 PAPI_EVENT2
PAPI_EVENT3 PAPI_EVENT4

(where PAPI_EVENTx can be any one of the PAPI monitored
events e.g. PAPI_L1_LDM, PAPI_L1_STM etc.). Also note that
in most cases, PAPI_EVENT4 is usually PAPI_TOT_CYC (total
cycles) since we use it as a reference to display the relative
impact of each bottleneck in terms of program execution (see
stacked-bar-chart: Figure 3)

4. Benchmark Tests
In order to test the PDMA toolkit we ran a number of tests on a
few select benchmarks. Initially while beta-testing our tool we
wrote a couple of micro-benchmarks to intentionally cause a
lot of cache misses (the results for which were reported in our
previous presentation [7]). We finally validated our tool
against four real benchmarks.

4.1 PARKBENCH [5]
POLY1 and POLY2 from PARKBENCH (PARallel Kernels
and BENCHmarks)

The POLY1 and POLY2 benchmarks quantify the dependence
of computer performance on memory access bottlenecks. The
POLY1 benchmark repeats the polynomial evaluation for each
order typically 1000 times for vector lengths up to 10,000,
which would normally fit into the cache of a cache-based
processor. Except for the first evaluation the data will be found
in the cache. POLY1 is therefore an in-cache test of the memory
bottleneck between the arithmetic registers of the processor
and its cache. POLY2, on the other hand, flushes the cache
prior to each different order and then performs only one
polynomial evaluation, for vector lengths from 10,000 up to
100,000, which would normally exceed the cache size. Data
will have to be brought from off-chip memory, and thus
POLY2 is an out-of-cache test of the memory bottleneck
between off-chip memory and the arithmetic registers.

The test results for the POLY benchmarks are summarized in
Table 1. The table lists all observed hotspots in the source
code along with its calculated L1 load cache miss (LDM) count
for the POLY1 and POLY2 benchmarks. As can be seen, the
number of cache misses in POLY2 is significantly higher than
in POLY1 for the same hotspot. Since POLY2 is an out of cache
test this behavior is consistent with the benchmark. The
resultant histograms for POLY1 and POLY2 L1 load cache
misses are displayed in Figures 4 and 5 respectively. The

plots provide for comparative analysis, such as line 65 in the
source file doall.c causes 23.5% of the total cache misses in
POLY1 (about 4000) while 10% of the total cache misses in
POLY2 (about 140000). Note that once the user clicks on a
particular Hotspot in the histogram, the corresponding line in
the source code is highlighted.

Hotspot
(Source/Line)

LDM Count
(POLY1)

LDM Count
(POLY2)

doall.c, line 65 4,000 140,000

doall.c, line 79 2,000 140,000

doall.c, line 93 2,000 140,000

doall.c, line 107 2,000 140,000

doall.c, line 121 1,000 140,000

doall.c, line 135 1,000 140,000

doall.c, line 149 1,000 130,000

doall.c, line 163 1,000 140,000

doall.c, line 177 2,000 140,000

doall.c, line 191 1,000 150,000

Table 1: LDM Hotspots in POLY1 and POLY2

4.2 DSP Benchmarks [6]
We used two DSP benchmarks - compress and FFT. The above
two benchmarks were obtained from the UTDSP benchmark
suite [6], and are considered important for DSP applications.
These benchmarks are not memory bound but computation
bound.

ß Compress: Uses the discrete cosine transform to
compress a 128X128 pixel image by a factor of 4
while preserving the information content.

ß FFT: Performs a Fast Fourier Transform and its
inverse. The input data is a polynomial function with
pseudo random amplitude and frequency
components.

Figure 6 shows the L1 instruction cache misses for the
compress benchmark (see Table 2 for actual values). Using
this plot the most computationally intensive lines in the
source code can be easily identified. Figure 7 shows the
stacked bar chart for the FFT bench mark. It displays the
amount of cycles lost due to each memory bottleneck at
various lines in the source code. For example a lot of L1
instruction cache misses are caused in line 95 and a lot of L1
store cache misses are cause in Line 12.

Hotspot
(Source/Line)

Instruction
Cache Miss
(ICM) Count

Relative
Percentage

IO.c ,line 49 1,000 0.6%

IO.c ,line 50 2,000 1.2%

compress.c, line 67 1,000 0.6%

compress.c, line 72 1,000 0.6%

compress.c, line 73 2,000 1.2%

compress.c, line 88 1,000 0.6%

compress.c, line 124 3,000 1.9%

compress.c, line 125 8,000 5.09%

compress.c, line 126 1,000 0.6%

compress.c, line 127 13,000 8.28%

compress.c, line 128 26,000 16.56%

compress.c, line 130 5,000 3.18%

compress.c, line 138 5,000 3.18%

compress.c, line 139 10,000 6.36%

compress.c, line 140 1,000 0.6%

compress.c, line 141 21,000 13.37%

compress.c, line 142 26,000 16.56%

compress.c, line 145 19,000 12.1%

compress.c, line 153 1,000 0.6%

compress.c, line 156 3,000 1.9%

compress.c, line 157 2,000 1.2%

compress.c, line 158 1,000 0.6%

compress.c, line 159 2,000 1.2%

compress.c, line 170 1,000 0.6%

compress.c, line 171 1,000 0.6%

Table 2: ICM Hotspots in compress

5. Discussion and Future Work
We would like to enhance our toolkit by addressing the
following issues:

ß Test the tool on the SPEC [8] benchmarks.

ß Currently the GUI is invoked after the results are
dumped upon program completion. In the future we
would like to dump the results in a shared memory
pool, which the GUI can access so that the histogram
can be updated while the program runs.

ß We would like to explore the features of Dyninst that
allow us instrument the code at runtime. Using this
feature the user can have control over changing the
event to be monitored as the program executes.

ß There seems to be a deadlock between the PAPI and
Dyninst library calls when the isTerminated()
command is used. We would like to investigate this.

ß We would like to use more than two events at a time
in PAPI and check the accuracy of the counters when
they are multiplexed.

ß We would like to explore the choice of threshold
more thoroughly by conducting a detailed study on
the strategies used to select an optimal threshold
value, since it has a direct impact on the accuracy of
our results.

ß Similar to the threshold parameter, but of less
significance, are the multiplication factors used in
computing lost cycles in the stacked-bar-chart. We
would like to study the implications of choosing
specific values for these factors.

ß We would like to allow the user to insert the PAPI
probe into specific functions/loops of the program
and also monitor iterations.

ß Finally, we would like to do a comparative study of
our model with other existing approaches.

6. Conclusion
In this report, we present our experience in designing and
implementing the PDMA toolkit. The primary purpose of this
toolkit is to detect the cause and highlight the implications
(w.r.t execution time) of specific memory bottlenecks in a
given program. We employ PAPI to access hardware
performance counters to identify such bottlenecks (cache
misses), and Dyninst to dynamically insert this PAPI code into
the running binary, thereby allowing any section of the code
to be monitored on the fly. The GUI presents the memory
bottlenecks as histograms which are linked to the source code.
We validate our tool using specific benchmark tests whose
outcome is consistent with our understanding of the code.
Finally, we list future directions for research in order to build
upon the foundations of the framework we’ve constructed.

7. References
[1] http://icl.cs.utk.edu/papi/index.html

[2] http://www.dyninst.org

[3] http://www.csm.ornl.gov/dunigan/sparc3

[4] www.jfree.org

[5] http://www.netlib.org/parkbench/

[6]
http://www.eecg.toronto.edu/corinna/dsp/infrastructure/utdsp.
html

[7] http://www.glue.umd.edu/~sgopan/PDMA.ppt

[8] http://www.specbench.org

Figure 4. L1 Cache Load Misses for POLY1 Benchmark

Figure 5. L1 Cache Load Misses for POLY2 Benchmark

Figure 6. L1 Instruction Cache Misses for compress Benchmark

Figure 7. Total Cycles’ Stacked-Bar Chart for FFT Benchmark

