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Abstract. The aim of this report is to study the two nonlinear manifold learn-
ing techniques recently proposed (Isomap [12] and Locally Linear Embedding
(LLE) [8]) and suggest directions for further research. First the Isomap and
the LLE algorithm are discussed in detail. Some of the areas that need further
work are pointed out. A few novel applications which could use these two
algorithms have been discussed.

1. Problem Statement

Manifold learning can be viewed as implicity inverting a generative model for a
given set of observations. Let Y be a d dimensional domain contained in a Euclidean
space Rd. Let f : Y → RD be a smooth embedding for some D > d. The goal
is to recover Y and f given N points in RD. Isomap [12] and LLE [8] provide
implicit description of the mapping f . Given X = {xi ∈ RD | i = 1 . . . N} find
Y = {yi ∈ Rd | i = 1 . . . N} such that {xi = f(yi) | i = 1 . . . N}.

For example, consider the swiss roll data set which is used in many of the pa-
pers. The swiss roll is generated by the following equations x1 = y1cos y1; x2 =
y1sin y1; x3 = y2; y1 ∈ [3π/2, 9π/2]; y2 ∈ [0, 15]. Based on a set of x1,x2 and x3 we
have to find y1 and y2. Note that we are implicitly inverting the generative model
without explicit parametrization of the generative function f .

2. Types of Embedding

Without imposing any restrictions of f the problem is ill-posed. The simplest
case is a linear isometry i.e. f is a linear mapping from Rd → RD where D > d. In
this case Principal Component Analysis (PCA) recovers the d significant dimensions
of the observed data. Classical Multidimensional Scaling (MDS) produces the same
results but uses the pairwise distance matrix instead of the actual coordinates.

Two other possibilities are considered in [6, 5]. f can be either a isometric em-
bedding or a conformal embedding. An isometric embedding preserves infinitesimal
lengths and angles while a conformal embedding preserves only infinitesimal angles
(it does not preserve lengths). In case of conformal embedding at every point y ∈ Y
there is a scalar s(y) > 0 such that the infinitesimal vector at y gets magnified by
a factor s(y). In case of isometric embedding s(y) = 1. One way to visualize these
two embeddings is to consider a 2D rubber sheet. The rubber sheet can be curved
and folded such that it gets embedded in a 3D space e.g. the rubber sheet could
be folded into a S shaped curve. If we fold the rubber sheet without stretching it
we have an isometric embedding. If we stretch the rubber sheet with stretching
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differing at different places we have a conformal embedding. The swiss roll data
set is an isometric embedding.

The Isomap algorithm can recover an isometric embedding. The LLE can recover
both isometric as well as conformal embeddings. Note that isometric is a special
case of conformal embedding where s(y) = 1.

3. Isomap Algorithm [12]

One important property of isometric embedding is that the manifold can be
regarded as a metric space under geodesic distance i.e. when we unfold the manifold
we get a Euclidean space (An isometric embedding is said to be intrinsically flat.).
If f is an isometric embedding then the geodesic distance is an invariant under
the mapping f . The distance between an two points in Y is equal to the geodesic
distance between the two points in f(Y ). Isomap algorithm as proposed in [12]
uses this invariance and constructs a geodesic metric based on the observed data
alone without any knowledge of the underlying metric. If Y is a convex domain in
Rd and the data points are sufficiently dense that Isomap can successfully recover
the original Euclidean structure.

The crux of the Isomap algorithm is finding an efficient way to compute the
true geodesic distance between observations, given only their Euclidean distances
in the higher dimensional observation space. The idea is that Euclidean distance is
approximately equal to the geodesic distance for closeby points. For points which
are faroff the geodesic distance has to be computed by a series of hops. The Isomap
algorithm as proposed in [12] consists of three main steps.

(1) Construct the neighborhood graph G over all observation points. Connect
points i ad j if they are closer than ε or if i is one of the K nearest neighbors
of j. Set the edge lengths equal to distance between i and j. The distance
could be either Euclidean or other domain specific distance metric.

(2) Compute shortest paths in the graph between every two points using either
the Floyd’s or the Djkstra’s algorithm.

(3) Apply MDS to the resulting geodesic distance matrix to find a d-dimensional
embedding.

4. Locally Linear Embedding (LLE) [8]

LLE takes a slightly different approach than Isomap. It eliminates the need
to estimate pairwise distances between widely separated data points. The LLE
algorithm can be described as below:

(1) For each data point Xi find its K nearest neighbors.
(2) We expect each data point and its neighbors to lie on or close to a lo-

cally linear patch of the manifold. Each point can be written as a linear
combination of its neighbors. Compute the weights Wij that best linearly
reconstructs Xi from its neighbors.

(3) If the data lie on or near a smooth nonlinear manifold of lower dimension-
ality then there exists a linear mapping (consisting of translation, rotation
and rescaling) that maps the higher dimensional coordinates of each neigh-
borhood to global internal coordinates on the manifold. By design, the
weights that minimize the reconstruction errors are invariant to rotation,
rescaling and translation of the data points. Invariance to translation is
enforced by adding the constraint that the weights sum to one. Hence the



NONLINEAR MANIFOLD LEARNING 3

same weights that reconstruct the data points in D dimensions should re-
construct it in the manifold in d dimensions. The weights characterize the
intrinsic geometric properties of each neighborhood. Compute the lower
dimensional embedding vectors Yi best reconstructed by Wij .

See Appendix I for a detailed derivation of the LLE algorithm.

5. Finer Points and Further Directions

In this Section I discuss some of the more subtler points with an untoward bias
towards where it would fail. Some of the theoretical issues that need to be resolved
are also discussed.

5.1. The Case of the Conformal Embedding. Conformal mappings are locally
isometric only to a scale s(y). Since the reconstruction weights in LLE are invariant
to rescaling, it is successful in recovering the lower dimensional embedding. However
Isomap can recover only an isometric embedding.

However recently a new version of the algorithm called the C-isomap [6] has been
proposed by the same authors for the case of conformal embeddings. The algorithm
is based on estimating the scale factor at each point. The method requires the
assumption that the original sampling is uniform. A typical example quoted for
conformal embedding is the stereographic fishbowl data (also called stereographic
projection). Points are uniformly samples on a disk and are projected on a fish bowl
lying below it. Uniformly sample points on the disk bunches up non-uniformly near
the rim of the fish bowl.

Since conformal maps are locally isometric up to a scale factor s(y), we first
estimate s(y) at each point in the observed data. By rescaling, we can then restore
the original metric structure of the data and proceed as in Isomap. We can do this
by noting that a conformal map rescales local volumes by a factor s(y)d. If the
hidden data are sampled uniformly in Y then the density in the observed space will
be 1/s(y)d. Hence if the original sampling density is uniform then we can estimate
the scale factor s(y) at each point based on the density in the observed space. The
algorithm is same as the isomap but with the modification that in the graph G edge
lengths are weighted by 1/

√
M(i)M(j). M(i) is some estimate of the density at

the point. In [5] the mean distance to its k nearest neighbors is used. The authors
mention that in asymptotic analysis the exact form of the weighting function is not
that critical.

5.1.1. Non uniform sampling. The C-isomap requires the assumption that data is
uniformly sampled in the original latent space Y . Typical examples include the
stereographic and the mercator projection. In a stereographic projection, points
are uniformly samples on a disk and are projected on a fish bowl lying below it.
Uniformly sample points on the disk bunches up non-uniformly near the rim of
the fish bowl. However consider the case of a uniform fishbowl where the data is
sampled uniformly on the surface of the fish bowl. Sice there is no bunching around
effect we cannot estimate the scale factor. C-isomap would behave very much like
isomap since our rescaling factor would be constant. See Figure 1 in [6] for results
of the C-isomap algorithm on the uniform fish bowl data set. In the plots the LLE
algorithm gave better results than the c-isomap for uniform fishbowl data. First of
all is is not clear what to expect out of the algorithm in the case of points uniformly
embedded on the top of a sphere.
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5.2. Are there other types of embeddings? The natural question that arises
is whether there are other types of embeddings? Are these formally studied in math
literature somewhere? For example like in conformal embeddings where the local
neighborhood is scaled the local neighborhood could be sheared? LLE weights are
not invariant to shearing. Isomap also fails in this case. Can the local neighborhood
be characterized by nonlinear weights which are invariant to the particular kind of
embedding?

5.3. What are the manifolds of natural images? In the papers the authors
show their results on natural images which are generated by smooth variations of
certain parameters. One thing that needs to be studied is what is the nature of
these manifolds. To start these studies could be done for simple images like circle
moving around in an image. What sort of embedding do these images get embedded
in the higher dimensional space? What kind of natural images can be successfully
recovered by the above two algorithms.

Manifold learning is ideal for images which are produced by smoothly varying
some parameters. For example faces with different poses may naturally exhibit
manifold geometry. In [12] the algorithm is applied to had written digits. In this
case it is not clear whether they lie on a smooth manifold. They show that Isomap
still finds some globally meaningful coordinates.

5.4. The problem of disconnected manifolds. These methods fail if data lie
on disconnected manifolds or connected manifolds each with different dimensional-
ity. it would be beneficial if these algorithms were applied separately on different
manifolds. So this involves figuring out whether there are manifolds of different
dimensions connected.

5.5. What is wrong with being non-euclidean? In our original problem state-
ment we assumed that Let Y be a d dimensional domain contained in a Euclidean
space Rd. It is not exactly clear how to handle non-Euclidean domain Rd. What
should be the desired output in such cases? Based on the problem at hand the
Isomap algorithm can be used with different distance metric instead of the Eu-
clidean distance metric. Need to understand whether this is beneficial and how
does it affect the algorithm. In [12] for the 2-data set a tangent distance metric
is used. Say instead of using euclidean distance metric we use procrustes distance
metric which gives the distance on the manifold. Then how to embed points on
the surface of the manifold. Procrustes distance directly gives the distance on the
spherical manifold. So we need to derive an version of the MDS on the spherical
manifold. Note that classical MDS is designed for euclidean manifold. Classical
MDS takes a matrix of pairwise Euclidean distances and gives their corresponding
coordinates which are consistent with the given pairwise distances. The main step
in metric MDS is where the pairwise distance matrix is converted to the dot-product
matrix. This is based on the cosine law and for it to be valid the distance has to
be Euclidean. For flat manifolds like the swiss roll or spiral this is true since the
geodesic distance is equal to the Euclidean distance in the original space Y . But if
the distance is non-Euclidean classical MDS does not exactly recreate the original
configuration. What about points on the surface of a sphere or torus? The sphere
are the toroid are slightly tricky. I have a rough idea on how to do MDS on a
spherical manifold. Also need to explore what exactly ordinal MDS does? In our
applications is the metric structure important or just the ordering?
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Second case is when 2D points get embedded on the surface of a sphere. How
do you flatten a sphere or a toroid? In this case the embedding has to be on the
surface of the spheres? can you flatten out a sphere? It does not make sense to
embed it on a plane. The embedding has to be on the surface of the sphere.

5.6. Explicit parametrization of f. The two techniques described implicity pa-
rameterize the function f . For each observation point we get the corresponding
point in the lower dimensional space. However, for some applications we would like
to have an explicit parametrization of the function f or f−1. For example inter-
polation or extrapolation would require to know the form of f−1. Give pairs of yi

and xi we can find f based on techniques employing neural networks and radial
basis functions. If we know the explicit parametrization then if we have a new
observation we can immediately get its corresponding lower dimensional feature
vector without redoing the entire procedure. Note that all these methods use all
the available data to build a global representation.

5.7. Short circuit problem. The only parameter which needs to be tuned is K
or ε depending on the method used. This step is vulnerable to short-circuit errors
if the neighborhood is too large with respect to folds in the manifold on which the
data points lie or if noise in the data moves the points slightly off the manifold. Even
a single short-circuit error can alter many entries in the geodesic distance matrix,
which in turn can lead to a drastically different (and incorrect) low-dimensional
embedding [2]. [2] demonstrate this by adding noise to the swiss roll data set. In
such cases appropriately selecting K is very essential for the algorithm. Choosing
a very small neighborhood is not a satisfactory solution, as this can fragment the
manifold into a large number of disconnected regions. How to find appropriate K
is an open issue.

5.8. LLE and K. In LLE we first find the K nearest neighbors. The algorithm
depends on the value of K chosen. Two questions can be addressed here.

• How to automatically choose K? In LLE K is closely related to the intrinsic
dimensionality of the data. First the algorithm can recover embeddings
whos dimensionality is strictly less than K. How are K and the resulting
embedding related?

• The unusual case where K > D like in the swissroll the number of neighbors
was greater than the 3 dimensional space into which it wad embedded. In
this case the local reconstruction weights are not uniquely defined. So
the authors add some regularization term to break the degeneracy. The
regularizer favors weights that are uniformly distributed in magnitude.

• What about variable K i.e. the number of neighbors need not be same for
each point? What strategy should be used to choose variable K? If so does
it give any benefits?

5.9. Convergence issues and manifold curvature. How curved can be mani-
fold be? How densely should the manifold be sampled? The asymptotic convergence
issues which relate convergence with the manifold curvature and the sampling den-
sity can be see in [4]. It gives various converge proofs. Studying that paper could
give a idea on what sort of manifolds can the algorithm handle.
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5.10. Intrinsic Dimensionality. In the LLE algorithm we choose the eigen vec-
tors corresponding to the bottom most d + 1 eigen values of M . I expected these
eigen values to reflect the intrinsic dimensionality of the dataset. however some
examples showed in the paper do not reveal the intrinsic dimensionality except for
a few examples. This effect is discussed in detail in [9]. The authors also give a
method as to how to enforce the intrinsic dimensionality if it is known aproiri.

5.11. Local vs Global. Local approaches like LLE and Laplacian Eigenmaps [3]
(this is a new technique which I have not yet studies) attempt to preserve the local
geometry of the data; essentially, they seek to map nearby points on the manifold to
nearby points in the low-dimensional representation. Global approaches like Isomap
attempt to preserve geometry at all scales, mapping nearby points on the manifold
to nearby points in low-dimensional space, and faraway points to faraway points.
The principal advantages of the global approach are that it tends to give a more
faithful representation of the datas global structure. The local approaches have
two principal advantages: (1) computational efficiency: they involve only sparse
matrix computations which may yield a polynomial speedup; (2) representational
capacity: they may give useful results on a broader range of manifolds, whose local
geometry is close to Euclidean, but whose global geometry may not be.

5.12. Are these kernel methods? There is a paper [7] which shows that all these
algorithms are different versions of kernel PCA.

5.13. Differential Geometry. The problem of manifold Learning involves a lot
of concepts from differential geometry. It would be highly beneficial to take a math
course on Differential Geometry and have an understanding of the Reimannian
geometry, differentiable manifolds and sub-manifolds.

6. Applications

In this section we discuss different applications where manifold learning tech-
niques could be applied to give novel solutions to different applications. The two
applications are related to the work I am familiar with.

6.1. Localization of sensor networks. I think manifold learning techniques are
a great tool for applications in sensor network localization. The problem is that
we have thousands of sensors which are ad-hoc deployed. These sensors have wire-
less capabilities by which they can communicate to each other (not necessarily to
each other but atleast to its neighbors). The goal is to localize these sensors au-
tomatically i.e find out their positions. Localization is done in two steps: ranging
and multilateration. In ranging we measure the pairwise distances between all the
sensor nodes. Based on these pairwise distances we estimate the position of the
nodes. If we know the pairwise distances between all the nodes we can use MDS
to localize these sensors. However when there are thousands of sensors the best
we can hope is that we know the pairwise distances between each sensors and its
neighbors. So we can build local coordinate systems at each neighborhood. These
local neighborhoods are overlapping. The idea is to combine these local coordi-
nate systems into a global one. The LLE algorithm is very much suited for this
application. In LLE we knew the actual coordinates of the points in the higher di-
mensional space. However the LLE can also be derived if we know just the pairwise
distances between all points in small neighborhoods. The same trick used in MDS
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of converting the distance matrix to dot product matrix is being used here. Here
we know the dimensionality of the data set i.e three. We can enforce this by doing
a MDS in the local neighborhoods and doing a projection of the points on the three
principal components and the expressing each point as a linear combination of the
other points in this MDS space.

6.2. Perceptually motivated Interpolation. Interpolation or extrapolation of
data is a important problem for high dimensional data. Most of the data are sam-
pled over a certain parameter set. We would like to know the data at a set of
parameters not sampled. Blind interpolation would be justified only when the sam-
pling rate is very high as given by the Nyquist sampling rate. Ideally interpolation
should be perceptually motivated i.e. the perceptually relevant features should be
interpolated rather than interpolating the actual data. Manifold learning provides
a canonical set of globally meaningful features which could possibly recover the
perceptually important/relevant features. The reason for this being most high di-
mensional data is produced by smoothly varying a few parameters. This smooth
variation traces out a manifold in the higher dimensional space. Since manifold
learning techniques respect the geodesic distance on the manifold these features
are usually extracted. Simple linear operations in the feature space can give rise to
highly non-linear transformations in the original observation space. One interesting
part would be to figure out whether manifold learning gives perceptually important
features? In some cases where the data depends on a large number of parameters
we can find out which parameters ar most relevant.

One problem which I have been working on is interpolation of Head Related Im-
pulse response (HRIR). A HRIR is a function of time, elevation, azimuth, and the
individual. Measuring a HRIR experimentally for a fine sampling grid of elevation
and azimuth is a time consuming and laborious process. In most spatial audio sys-
tems some sort of interpolation of the HRIR with respect to elevation and azimuth
is needed. Interpolation is a very deceptive word here since any trivial interpo-
lation of the HRIRs without taking into consideration the physical significance of
the various features of the HRIRs and their dependency on elevation,azimuth and
individuals would not make any sense. For interpolation with respect to elevation
and azimuth different approaches used include direct time domain interpolation of
HRIRs, direct frequency domain interpolation of HRTFs and interpolation of prin-
cipal components in the PCA domain. These methods do not take into account
the perceptual significance of the different features in the HRIR or the HRTF. For
example if we just use linear interpolation in the frequency domain we are just
averaging the magnitude of the spectrum of the closest sampling points which may
distort the perceptually significant features. Ideally interpolation should be done in
the perceptually important feature domain. Also a set of generic HRIR would not
work satisfactorily since it has been shown that HRIRs are specific to an individual
and if we use HRIRs of some other person the elevation perception will be very
poor. Due to the difference in the anatomy of the humans and also the shape of the
pinna the HRIRs for different persons will be quite different. I would like to try out
the techniques discussed in the paper for HRIR interpolation and customization.

6.3. Misc.

6.3.1. Dimensionality Reduction. The problem of manifold learning fits into the
broader category of non-linear dimensionality reduction. Many fields like computer
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vision, bio-informatics, economics, weather prediction, astronomy are faced with
the problem of finding relevant low-dimensional patters in large amounts of high-
dimensional data. Linear dimensionality reduction techniques may not capture the
perceptually relevant features if the data is embedded non linearly in the higher
dimensional space.

6.3.2. Measure of similarity. Say we would like to find a measure of similarity
between two face images of different poses. In this case the geodesic distance on
the manifold would be a ideal choice.

6.3.3. Classfication/Recognition. All recognition and classification algorithm (like
pose or gait recognition) which used to use the linear features (based on PCA/MDS)
now could be cast in the framework of the non-linear features extracted and see if
we get better results.

6.3.4. Information Visualization. Manifold learning could be a great tool for infor-
mation visualization where experts would like to find patterns in high dimensional
data.

6.3.5. Manifolds of perception. [10] suggests that there could be a connection be-
tween the neural manifolds and the image manifolds. There is a hypothesis that a
visual memory is stored as a manifold of stable states. Manifold could prove to be
crucial for understanding how perception arises from the dynamics of neural net-
works in the brain [10]. In auditory neuroscience localization of a sound source by
the human ears is a active field. Could the signal spectrum for different directions
around the head be stored as a manifold.

7. Conclusion

A good place to start exploring on the field on manifold learning is the website
Resources on manifold learning maintained by Martin Law at MSU [1].

8. Appendix I:LLE Derivation

Here I give a detailed derivation of the LLE algorithm. I have slightly modified
the derivation given in the paper [9] in that, I have derived it completely in terms
of vectors and matrices so that it can be easily implemented in MATLAB.

8.1. Compute the reconstruction weights. Compute the weights Wij that best
linearly reconstruct Xi from its neighbors. Let W be an N ×N matrix where Wij

is the weight by which the jth point should be multiplied to reconstruct Xij .

(8.1.1) W = arg min
W

N∑

i=1

‖Xi −
N∑

j=1

WijXj‖2

This minimization has to be done subject to two constraints:

• The sparseness constraint Wij = 0 if Xj is not one of the K neighbors of
Xi.

• The invariance constraint
∑N

i=1 Wij = 1 i.e. the weights should sum to 1.
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Consider one point a D × 1 vector X. Let X1, X2, ....,XK be the K nearest
neighbors of x. Define:

(8.1.2) Z = [X1|X2| . . . |XK ]

Let W (slight change of notation forget the old matrix W ) be a K × 1 vector be
the reconstruction weight vector. Then the reconstructed vector can be written as:

(8.1.3) X̂ = ZW

8.2. Invariance properties of W . The constrained weights for any particular
data point are invariant to rotations, rescalings and translations of that data point
and its neighbors.

8.2.1. Scale Invariance. Let s be the scaling factor.

Znew = sZ

X̂new = (sZ)W = s(ZW ) = sX̂(8.2.1)

8.2.2. Rotation Invariance. Let R be the rotation matrix.

Znew = RZ

X̂new = (RZ)W = R(ZW ) = RX̂(8.2.2)

8.2.3. Translation Invariance. Let t be the translation vector.

Znew = Z + t1t

X̂new = (Z + t1t)W = ZW + t1tW = X̂ + t(8.2.3)

The translation invariance is enforced by the sum to one constraint i.e 1tW = 1.

8.3. Derivation of reconstruction weights.

(8.3.1) W = arg min
W

1
2
‖X − ZW‖2

subject to the constraint that 1T W = 1. Let

J(W ) =
1
2
‖X − ZW‖2 =

1
2
(X − ZW )T (X − ZW )(8.3.2)

The constrained minimization can be done using the method of lagrange multipliers.

JL(W ) =
1
2
(X − ZW )T (X − ZW ) + λ(1T W − 1)(8.3.3)

where λ is the lagrange multiplier.

(8.3.4)
∂JL(W )

∂W
= −ZT X + ZT ZW + λ1 = 0

(8.3.5) (ZT Z)W = ZT X − λ1

Let us define C = ZT Z called the neighborhood correlation matrix.

(8.3.6) W = C−1(ZT X − λ1)

Substituting for W from this equation into the constraint 1T W = 1 we get:

(8.3.7) λ =
1T C−1ZT X − 1

1T C−11
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8.4. Lower Dimensional embedding. The final step is to construct a low di-
mensional embedding based on the reconstruction weights. Let

(8.4.1) Y = [Y1|Y2| . . . |YN ]

a d×N matrix, be the corresponding lower dimensional embedding of X (d < D).
Find Y to minimize

(8.4.2) Φ(Y ) =
N∑

i=1

‖Yi −
N∑

j=1

WijYj‖2

In matrix form this can be written as.

Φ(Y ) = Tr[(Y − Y W )T (Y − Y W )]

= Tr[(Y − Y W )(Y − Y W )T ](8.4.3)

(8.4.4) Φ(Y ) = Tr[Y (I −W )(I −W )T Y T ]

Define M = (I −W )T (I −W ). Then

(8.4.5) Φ(Y ) = Tr[Y MT Y T ] = Tr[Y MY T ]

since M is a symmetric matrix. In order to make the problem well posed we
introduce additional constraints.

• The cost function Φ(Y ) is invariant to translation of the coordinates. we
remove this translational degree of freedom by requiring that the outputs
be centered at the origin i.e. Y 1 = 0.

• In order to remove the rotational degree of freedom and fix the scale we
constrain Y to have unit covariance i.e. Y Y T = I.

We first minimize the cost function subject to the second constraint.

(8.4.6) Y = arg min
Y

Tr[Y MY T ]

subject to the constraint that WT W = I. Later from this solution we show how
the translational invariance constraint ca be imposed. Again we use the method of
lagrange multipliers it can be shown that the solution is a generalized eigen value
problem of the form

(8.4.7) MY T = Y T Σ

Σ is the diagonal matrix of the eigen values. Also

(8.4.8) Φ(Y )minimum = Tr[Σ]

So we can choose the eigen vectors corresponding to the bottom most d + 1 eigen
values. we ignore the last eigen vector with eigen value 0. Consider

(8.4.9) M1 = (I −W )(I −W )T 1 = 0

using the fact that WT 1 = 1 i.e. the weights sum to 1. Therefore the bottom
most eigen value will be 0 with the corresponding eigen vector 1. Now by the
orthogonality constraint all other eigen vectors should be orthogonal to 1 i.e.

(8.4.10) (Y T )T = Y 1 = 0

hence discarding the last eigen vector enforces the translation invariance constraint.
This corresponds to the free translation mode of eigen value 0. Since M is a sparse
matrix efficient methods exist to compute the eigen values.
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