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Microphone arrays are widely employed for applications like teleconferenc-
ing, high quality sound capture, speaker recognition/identification, acoustic
surveillance, head aid devices, speech acquisition in automobile environments
etc. For all these applications the benefits that a microphone array provides
over a single microphone are two fold. First using a microphone array we can
localize a sound source and track its position accurately. The second benefit is
that once the source location is known the microphone array can be electroni-
cally steered to the source providing spatial filtering. So the essential require-
ment for all these applications is the ability of the microphone array to locate
a speech or sound source accurately. Broadly three types of methods exist for
localizing a sound source: Focalization using a steered beamformer, High resolu-
tion spectral-estimation methods and Time Difference of Arrival (TDOA) based
methods. Most commonly used method in practice is the TDOA based method
and we will explore the optimization methods and other scientific computing
techniques that can be applied to this method.

The TDOA method can be summarized as follows. In this assignment we
assume that the sound source is a point source and the microphones we use have
omni-directional receiving pattern(although realistic modelling can be done). So
there is a delay between the sound wave received by a pair of microphones. So
Sound source localization is a two step problem.

• First the signal received by several microphones is processed to obtain
information about the time-delay between pairs of microphones. Various
methods exist for estimating the time-delay which are based on the cross
correlation between the signals.

• The estimated time-delays for pairs of microphones can be used for getting
the location of the speaker.

In this project we won’t go in detail regarding how the delay is estimated.
Once the time delays are estimated the source localization problem can be for-
mulated as follows:
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Let there be M pairs of microphones. Let m1
i and m2

i for i ∈ [1,M ] be the
vectors representing the spatial coordinates(x,y and z coordinates) of the two
microphones in the ith pair of microphones. Let the source be located at s. The
actual delay associated with a source at s and the ith pair of microphones is
given by,

Ti(s) =
|s−m1

i | − |s−m2
i |

c
(1)

where, c is the speed of propagation of sound in the acoustical medium(Use
c = 342m/s). Let τi be the estimated time-delay. In practice, for a given mi-
crophone pair, the estimated delay τi and the actual delay Ti(s) will never be
equal because the estimated delay is corrupted by noise and also due to room
reverberation. Given M pairs of sensors, their spatial coordinates and the esti-
mated delays we can get an estimate ŝ of the source location.

Problem 1[5 points]

Consider one pair of microphones whose spatial coordinates are m1 and m2

and let τ be the time delay estimated for this pair of microphones. Using just
one microphone pair is it possible to get a unique source location? Describe
the region of ambiguity present?What is the minimum number of microphones
required to get the source source coordinates?

Given m1 and m2 are the (x, y, z) coordinates of the two microphones and
say let s be the location of the source. If τ the estimated delay is equal to the
actual delay then

τ =
|s−m1| − |s−m2|

c
(2)

|s−m1| − |s−m2| = τc (3)

where c is the speed of sound in air. Equation 3 represents one half(since
we have to take into account the sign of τ) of a hyperboloid of two sheets
with m1+m2

2 as the center with m1 and m2 being the two focal points and the
line joining the two microphones as the axis of symmetry. Figure 1 shows one
half of the hyperboloid of two sheets for a given microphone pair. Hence two
microphones cannot uniquely determine the source location in 3D space.

The minimum number of microphones required to get the 3D location is 3.
Since given 3 microphones there are 3 possible pairs of microphones. For each
pair the source should lie on one half of a hyperboloid. 3 such hyperboloids
intersect to specify a unique point in 3D space. Note that two pairs are not
sufficient since they intersect to give a curve and not a unique point.

Problem 2[10 points]

In general we never have an perfect time delay estimation procedure. Ex-
plain how by using a large number of microphones larger than the minimum
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Figure 1: The region in space which corresponds to a given microphone pair
for a given delay τ . This region corresponds one sheet of a hyperboloid of two
sheets with m1+m2

2 as the center and the line joining the two microphones as
the axis of symmetry.
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required we can formulate the problem as one which minimizes an error crite-
rion? Specifically us the fact that for a given microphone pair, the estimated
delay τi and the actual delay Ti(s) will never be equal and the true location
would be one which minimizes this difference among all microphone pairs?

Let there be M pairs of microphones. Let m1
i and m2

i for i ∈ [1,M ] be the
vectors representing the spatial coordinates(x,y and z coordinates) of the two
microphones in the ith pair of microphones. Let the source be located at s. The
actual delay associated with a source at s and the ith pair of microphones is
given by,

Ti(s) =
|s−m1

i | − |s−m2
i |

c
(4)

where, c is the speed of propagation of sound in the acoustical medium(c =
342m/s depends on the room temperature). Let τi be the estimated time-
delay. In practice, for a given microphone pair, the estimated delay τi and the
actual delay Ti(s) will never be equal because the estimated delay is corrupted
by noise and also due to room reverberation. Given M pairs of sensors, their
spatial coordinates and the estimated delays the source location s is one which
minimizes the error between the actual and the estimated time delay over all
microphone pairs.

ŝ = args(min(J(s))) (5)

where,

J(s) =
M∑

i=1

[τi − Ti(s)]2 (6)

This does not have a closed-form solution since it is a non-linear function of
s. We will have to use different optimization methods here.

The geometrical interpretation is as follows. Ideally if there were M ≥ 3 mics
then the intersection of all the hyperboloids corresponding to each microphone
pair would be a unique point. Due to the errors in the estimation of time delays
we do not have a unique intersection point. So by using the redundant mics we
try to find the source location which best belongs to all the the hyperboloids in
the least square sense.

Problem 3[10 points]

In the previous problem you formulated the problem as one which minimized
a certain error criterion. The same can be formulated in a prbabilistic frame
work. Assuming that the time delays estimated at each microphone pair are
independently corrupted by zero mean white additive gaussian noise derive an
Maximum likelihood estimator(ML) for the source location?(Remember that the
ML estimator is found by maximizing the likelihood function)Show that the re-
sult is the same as the previous formulation?



5

Let τi the estimated time delay be corrupted by zero-mean additive white
Gaussian noise with known variance var(τi).[This variance is usually the result
of the particular time delay estimation method]. So τi is normally distributed
with mean Ti(s) and variance var(τi). Ti(s) is the actual delay associated with
a source at s and the ith pair of microphones is given by Equation 1.

τi ∼ N(Ti(s), var(τi)) (7)

Assuming that each of the time delays are independently corrupted by zero-
mean additive white Gaussian noise the likelihood function can be written as:

p(τ1, τ1, ...., τM ; s) =
M∏

i=1

1√
2πvar(τi)

exp[
−(τi − Ti(s)2

2var(τi)
] (8)

The log-likelihood ratio is:

ln(p(τ1, τ1, ...., τM ; s)) = −
M∑

i=1

ln(
√

2πvar(τi)) + [
(τi − Ti(s)2

2var(τi)
] (9)

The Maximum Likelihood(ML) location estimate, ŝMLis the position which
maximizes the log likelihood ratio or equivalenlty one which minimizes:

JML(s) =
M∑

i=1

[τi − Ti(s)]2

var(τi
(10)

This is same as the previous case except that the variance term comes into
picture. Therefore

ŝML = args(min(JML(s))) (11)

Problem 4[5 points]
Try to get a feel for this function. Assume a certain room size, using say 16
microphones(four fixed on each wall) plot the function? Since it is a function
of 3 variables fix one of them and plot the function.

The function JML(s) was plotted for the room setup as shown in Figure 2.
There where a total of 16 microphones. Four mics are made to lie at the corners
of a square of side 50cm. Each such square was fixed on the center of one of the
four walls of the room. The coordinate system is also shown. For each square
which contains 4 mics there are 6 possible pairs of microphones. In our case we
used a total of 24 pairs of microphones with 6 corresponding to each square.
Note that the total number of pairs possible is (16 × 15)/2 = 120 of which we
are using only 24 pairs.

Figure 3 shows the function for the source present at the center of the room.
The function is shown as slices through the room. Each slice is parallel to the x-y
plane. Also the function is plotted in the decibel scale to emphasize the minima.
The minima now corresponds to the maxima which the darkest red part of plots.
Note that at the center of the room the function has the maximum value. In this
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Figure 2: Schematic of the room setup and the microphone array
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Figure 3: Error function for the source present at the center of the room. The
function is shown as slices through the room. Each slice is parallel to the x-y
plane.
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Figure 4: Error function for one more source position. The function is shown
as slices through the room. Each slice is parallel to the x-y plane.

case the delays were perfect that is they were not corrupted by noise and hence
we have not introduced the variance term in the error formulation. Figure 4
shows the same for one more position of the source.

Note that the function is very much dependent on the position of the micro-
phones. For example Figure 6 shows the function for the source present at the
center of the room for the microphone array configuration as in Figure 5.

Problem 5[20 points]
The function to be minimized is non-linear.Explore different methods to mini-
mize this function. Compare them by using a fixed source location and generating
the time-delays. Evaluate by using a large number of trials and report the error
and the number of iteration required and also the number of function evalua-
tions?

In this problem we evaluate different nonlinear optimization techniques to
minimize the function. Once again the problem can be stated as:

ŝ = args(min(J(s))) (12)

where,

J(s) =
M∑

i=1

[τi − Ti(s)]2 (13)
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Figure 5: Schematic of the room setup and the microphone array
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Figure 6: Error function for the source present at the center of the room. The
function is shown as slices through the room. Each slice is parallel to the x-y
plane.



9

We have not included the error variance since in this problem we will be
evaluating different optimization methods for the noise free case. In the next
problem we will consider the effect of noise on the TDOA estimates. We eval-
uate 4 different methods as described below. The simulations were done using
MATLAB. Much of the details given here are taken from Optimization Toolbox
User’s Guide.

1.Nelder Mead Simplex Method This is a direct search method that does
not use numerical or analytic gradients A simplex in n-dimensional space
is characterized by the n + 1 distinct vectors that are its vertices. In two-
space, a simplex is a triangle. In three-space, it is a pyramid. At each step
of the search, a new point in or near the current simplex is generated. The
function value at the new point is compared with the function’s values at
the vertices of the simplex and, usually, one of the vertices is replaced
by the new point, giving a new simplex. This step is repeated until the
diameter of the simplex is less than the specified tolerance. Can handle
discontinuities. Suitable for nonlinear problems with a large number of
discontinuities. Does not require the evaluation of gradient or Hessian.
But this method has a slow convergence
MATLAB function fminsearch

2.Quasi Newton Methods(BFGS,DFP) Newton-type methods use the Hes-
sian H to get the descent direction. Calculating H numerically involves
a large amount of computation. Quasi-Newton methods avoid this by us-
ing appropriate Hessian update schemes. The two commonly used update
schemes are the BFGS(Broyden , Fletcher, Goldfarb and Shanno) method
and the DFP(Davidon, Fletcher, and Powell) method. The BFGS method
uses rank 2 update. DFP method avoids the inversion of the Hessian H,
by using a formula that makes an approximation of the inverse Hessian at
each update.For both we use the mixed quadratic and cubic polynomial
line-search procedure.
MATLAB functions
fminunc with options.LargeScale set to ’off’ uses the BFGS Quasi-Newton
method with a mixed quadratic and cubic line search procedure.
fminunc with options.LargeScale set to ’off’ and options. HessUpdate
to ’dfp’ uses the DFP Quasi-Newton method with a mixed quadratic and
cubic line search procedure.

3.Nonlinear Least Square Methods(Gauss Newton,Levenberg Marquardt)
The problem we have is a nonlinear least square problem. Although the
function can be minimized using a general unconstrained minimization
certain characteristics of the problem can often be exploited to improve
the iterative efficiency of the solution procedure.The gradient and Hessian
matrix of LS problem have a special structure. Levenberg Marquardt and
Gauss Newton methods are the two methods widely used. These methods
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have very high accuracy and also low iteration count.
MATLAB functions
lsqnonlin with options.LargeScale set to ’off’ uses the Levenberg-Marquardt
method
lsqnonlin with options.LargeScale set to ’off’ and options.LevenbergMarquardt
to ’off’ uses the Gauss-Newton method.

Simulation Parameters

• The simulations were done for the room as shown in Figure 2. There
where a total of 16 microphones. Four mics are made to lie at the corners
of a square of side 50cm. Each such square was fixed on the center of one
of the four walls of the room. For each square which contains 4 mics there
are 6 possible pairs of microphones. In our case we used a total of 24 pairs
of microphones with 6 corresponding to each square.

• The results presented are averaged over 200 randomn trials were the actual
source position was assigned randomnly to lie in the room.

• options = optimset(’Display’,’off’,’TolFun’,1e-12,’TolX’,1e-12,’LargeScale’,’off’).

• Initial guess was in the center of the room.

• All these methods are compared based on the localization error(The local-
ization error is the Euclidean distance between the actual source position
and as found by the optimization method), the number of iterations and
the number of function evaluations required.

• For each of these the mean,median and the maximum value are noted.

The following table summarizes the results:
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200 Trials Localization Error (in m) Iterations Function Evaluations

METHOD Median Mean Max Median Mean Max Median Mean Max

Nelder 3.95e-13 4.15e-13 7.59e-13 176 177 209 320 324 377
Mead
Simplex

Quasi 3.71e-03 1.50e-04 2.73e-01 15 16 59 113 120 305
Newton
(BFGS)

Quasi 0.65 1.63 19.19 41 37 43 302 274 305
Newton
(DFP)

Gauss 5.72e-08 8.89e-07 9.76e-06 5 5 6 33 31 41
Newton

Levenberg 4.82e-06 1.44e-06 1.76e-05 7 7 9 44 44 63
Marquardt

Observations

• The first observation that can be made is that the Quasi Newton method
with DFP update performs the worst. Hence we eliminate this method
from our further discussion.

• The best method so far in terms of error is the Simplex method however
it is the worst in terms of number of iterations and functional evaluations.

• Quasi Newton with BFGS update has higher error than Simplex while
having significantly less number of iterations.

• However the best methods are the Gauss Newton and the Levenberg-
Marquardt algorithms which give very low error and also very low iteration
count.

• Among these two Gauss Newton method outperforms Levenberg-Marquardt.

Problem 6[10 points]
As mentioned earlier the the estimated delay τi and the actual delay Ti(s) will
never be equal because of noise and reverberation. For a given time delay τ
assume and error of ∆τ and explain the how the nature of the function to be
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minimized changes as ∆τ is increased?

The function to be minimized is

J(s) =
M∑

i=1

[τi − Ti(s)]2 (14)

The estimated delay τi and the actual delay Ti(s) will never be equal because
of noise and reverberation. In order to study the effect of the error in time
delay estimation in the source location we perturb each of the time delays τi

by a small factor ∆τ and see how the nature of the function to be minimized
changes.

J(s) =
M∑

i=1

[τi − Ti(s)]2

Ĵ(s) =
M∑

i=1

[τi + ∆τ − Ti(s)]2

Ĵ(s) =
M∑

i=1

[τi − Ti(s)]2 + ∆τ2 + 2∆τ [τi − Ti(s)]

Ĵ(s) =
M∑

i=1

[τi − Ti(s)]2 + M∆τ2 + 2∆τ

M∑

i=1

[τi − Ti(s)]

Ĵ(s) = J(s) + M∆τ2 + 2∆τ

M∑

i=1

[τi − Ti(s)]

Ignoring the M∆τ2term

Ĵ(s) ' J(s) + 2∆τ

M∑

i=1

[τi − Ti(s)]

Ĵ(s) ' J(s) + 2∆τE(s)
(15)

J(s) is the function which we want to minimize. But due to error in the es-
timation of time delays we are minimizing Ĵ(s) which is the sum of J(s) and
E(s).As ∆τ increases E(s) dominates.

Figure 7 shows this effect for the source present at the center of the room.
The function is shown as one slice parallel to the x-y plane at a height cor-
responding to the actual source location. Also the function is plotted in the
decibel scale to emphasize the minima. The minima now corresponds to the
maxima which the darkest red part of plots. Note that at the center of the
room the function has the maximum value. Also shown are the functions by
adding ∆τ to the timedelays along with the corresponding E(s). In each case
the actual source location is marked. As can be seen that as ∆τ increases the
function maxima no longer corresponds to the actual source location.
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Figure 7: The first plot is J(s) ,the second plot is E(s) the rest of the plots are
Ĵ(s) for different values of ∆τ

Problem 7[20 points]
Evaluate the different methods by varying adding a gaussian noise to the esti-
mated time delays and compare different methods?

Figure 8 plots the mean,median and the maximum localization error,number
of iterations and number of function evaluations for different optimization meth-
ods for varying noise conditions. The results are summed over 200 trials. The x
axis in each represents var(τ)c. Each of the time delay esimated was corrupted
by adding zero mean white Gaussian noise with variance var(τ). Following four
methods were compared:

• Nead Melder Simplex Method

• Quasi Newton with BFGS Hessian update and quadcubic line search.

• Gauss Newton .

• Levenberg Marquardt.

Observations

• The median localization error is same for all the methods.
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Figure 8: The plots show the mean,median and the maximum localization er-
ror,number of iterations and number of function evaluations for different opti-
mization methods for varying noise conditions. The results are summed over
200 trials. The x axis in each represents var(τ)c. Each of the time delay esti-
mated was corrupted by adding zero mean white Gaussian noise with variance
var(τ).
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• With respect to the mean and max localization error Gauss Newton method
has the least error followed by Levenberg Marquardt,Simplex with BFGS
having the largest error.

• Also as the noise is increased the the error increases.

• With respect to the number of iterations and function evaluation the Sim-
plex method requires the highest and the Gauss Newton requires the least.

Conclusion
Gauss Newton method is the best choice.
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