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Abstract— This paper presents the results of simulation and
real room studies for localization of a moving speaker using
information about the excitation source of speech production.
The first step in localization is the estimation of time-delay
from speech collected by a pair of microphones. Methods
for time-delay estimation generally use spectral features that
correspond mostly to the shape of vocal tract during speech
production. Spectral features are affected by degradations due
to noise and reverberation. This paper proposes a method for
localizing a speaker using features that arise from the excitation
source during speech production. Experiments were conducted
by simulating different noise and reverberation conditions to
compare the performance of the time-delay estimation and source
localization using the proposed method with the results obtained
using the spectrum-based Generalized Cross-Correlation (GCC)
methods. The results show that the proposed method shows lower
number of discrepancies in the estimated time-delays. The bias,
variance and the root mean square error of the proposed method
is consistently equal or less than the GCC methods. The location
of a moving speaker estimated using the time-delays obtained by
the proposed method are closer to the actual values, than those
obtained by the GCC method.

Index Terms— Excitation source information, Hilbert envelope,
time-delay estimation, speaker localization

I. I NTRODUCTION AND PREVIOUS WORK

A PPLICATIONS such as videoconferencing [1]–[3],
hands-free voice communication [4], [5], speech acqui-

sition in automobile environments [6], [7], speech recognition
[8], [9], acoustic surveillance and hearing-aid devices [10]
require the capture of high quality speech from the speakers.
The speech signal received from a speaker in such acoustical
environments is corrupted both by additive noise and room re-
verberation. One effective way of dealing with such situations
is to use a set of spatially distributed microphones for record-
ing the speech. Some of the above mentioned applications may
also require localizing and tracking the moving speaker. For
instance, to keep the speaker in focus in videoconferencing, the
speaker can be localized, and this information can be fed to a
video system for actuating the pan-tilt operations of a camera
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[1]–[3]. Once the actual position of the speaker is known, the
microphone array can be steered electronically (beamformed)
for high quality speech acquisition. Speaker Localization is
also useful in a multispeaker scenario in which speech from
a particular speaker may need to be enhanced with respect to
others, or with respect to noise sources.

The essential requirement for all the applications mentioned
above is the ability of the microphone array to locate a speaker
accurately. Broadly three types of methods exist for localiz-
ing the speaker [11]: (a) Maximizing the Steered Response
Power (SRP) of a beamformer, (b) Methods based on high
resolution spectral estimation, and (c) Methods based on Time
Difference of Arrival (TDOA). In the steered beamformer
approach the microphone array is electronically steered to
various locations to search for a peak in the output power.
A simple delay and sum beamformer or more sophisticated
beamformers which apply filtering can be used. Due to its
computational complexity and lack of prior knowledge of
the source and noise characteristics, this method may not be
practical for localizing speakers. The second method, based
on the high resolution spectrum estimation, uses the spatio-
spectral correlation matrix derived from the signals received at
the microphones. The high resolution methods are designed for
far field narrowband stationary signals, and hence it is difficult
to apply them to wideband speech. The most commonly used
method in practice is the TDOA-based method. In this method
the signals received by several microphones are processed to
estimate the time-delays between pairs of microphones. The
estimated time-delays can be used to derive the location of the
speaker.

For effective speaker localization, it is essential to obtain a
good estimate of the time-delay even when the signals are
corrupted by noise and reverberation [12]. The time-delay
may be estimated by locating the peak in the cross-correlation
function of the signals received by a pair of microphones.
However, this method is not robust to degradations in the
signals. Knapp and Carter [13] developed the Maximum Like-
lihood (ML) estimator for determining the time-delay between
signals received at two spatially separated microphones when
the noise is uncorrelated. In this method, the estimated delay
is the time lag which maximizes the cross-correlation between
filtered versions of the received signals [13]. The cross-
correlation of the filtered versions of the signals is called
the Generalized Cross Correlation (GCC) function. The GCC



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING 2

function Rx1x2(τ) is given by [13]

Rx1x2(τ) =
∫ ∞

−∞
W (ω)X1(ω)X∗

2 (ω)ejωτdω, (1)

where X1(ω) and X2(ω) are the Fourier transforms of the
microphone signalsx1(t) and x2(t), respectively, andW (ω)
is the weight function. The effect of five different weight
functions, namely, the Roth Impulse Response, the Smoothed
Coherence Transform (SCOT), the Phase Transform (PHAT),
the Eckart filter and the Maximum Likelihood (ML) weighting
were studied in [13].

The two most commonly used weight functions are ML and
PHAT. The ML weight function accentuates the signal passed
to the correlator at frequencies where the Signal-to-Noise
Ratio (SNR) is high [13]. Brandstein et. al. [14] proposed an
approximate ML type weighting for speech applications. The
approximate weight function is is given by

ŴML(ω) =
|X1(ω)||X2(ω)|

|N1(ω)|2|X2(ω)|2 + |N2(ω)|2|X1(ω)|2 , (2)

where |N1(ω)| and |N2(ω)| are the noise power spectra at
the two microphones, and are assumed to be known during
the silence interval [14]. We use this weight function in our
simulation studies. This ML weight function performs well
when the effect of room reverberation is low.

As the room reverberation increases, this method shows
degradations in performance [12]. Since the spectral charac-
teristics of the received signal are affected by the multipath
propagation or reverberation in a room, the GCC function is
made more robust by deemphasizing the frequency-dependent
weighting. The Phase Transform is one extreme case where the
magnitude spectrum is flattened. The PHAT weight function
WPT (ω) is given by

WPT (ω) =
1

|X1(ω)X∗
2 (ω)| . (3)

By flattening the magnitude spectrum the resulting location
of the peak in the GCC function corresponds to the dominant
delay. However, the disadvantage of the PHAT weighting is
that it places equal emphasis on both low and high SNR
regions, and hence works well only when the overall noise
level is low. St́ephanne and Champagne [15] proposed cepstral
prefiltering to reduce the effects of reverberation. Benesty [16]
proposed a novel method for time-delay estimation based on
eigenvalue decomposition of the covariance matrix.

The methods discussed above are applicable to a general
sound source. Recently, methods have been suggested for
localization of speaker by modelling the production of speech
[17], [18]. Brandstein [18] proposed a method based on the
knowledge of the periodicity of voiced speech. This method
requires the estimation of pitch, and hence the performance de-
pends on the robustness of pitch estimation method. Moreover
the method uses the spectral weighting based on the estimated
pitch harmonics. Most of the speech-model-based methods
use spectral features which correspond approximately to the
characteristics of the vocal tract system during the production
of speech. The spectral features are affected by transmission
through medium, noise and room reverberation. Not many

attempts have been made to exploit the characteristics of the
excitation source during the production of speech. In this
paper we show that features based on the excitation source
in speech production are robust to degradations such as noise
and reverberation. We discuss methods to extract the excitation
source information from a speech signal, and show how to
use this information to estimate the time-delay. The proposed
method does not use the periodicity property of voiced speech.
The method exploits the excitation characteristics of voiced
speech, especially the characteristics around the glottal closure
instants.

The paper is organized as follows: A method for estima-
tion of time-delay using the excitation source information is
proposed in Section II. The proposed method is compared
with GCC-PHAT, GCC-ML and Brandstein’s methods using
simulations, and are discussed in Section III. In Section IV
speaker localization is described, and is compared with the
results obtained using the GCC-PHAT method. The paper con-
cludes with a summary of the present work, and a discussion
on possible extensions.

II. T IME-DELAY ESTIMATION USING EXCITATION SOURCE

INFORMATION

Speech is the result of excitation of a time-varying vocal
tract system with time-varying excitation [19]. The common
and significant mode of excitation of the vocal tract system is
the vibration of vocal folds, called glottal vibration, which to a
first approximation may be treated as consisting of a sequence
of impulses [20]. The characteristics of the dynamic vocal
tract system are represented by short-time spectral features.
Since the signal received at a microphone is affected by
noise and the response of room, the received signal contains
information about the vocal tract system corrupted by different
levels of degradations at different microphones. However, it
is interesting to note that the relative locations of epochs or
instants of significant excitation in the production of speech
are not affected by degradations [21]. The epochs in a voiced
segment correspond to the instants of glottal closure, and their
locations along the time scale do not change with the impulse
response of the acoustical environment. In unvoiced segments
also there may be epochs due to strong bursts of excitation,
even though they may not occur at periodic intervals as in
the voiced case. But their relative locations are unaffected by
degradation.

The excitation source information can be extracted from the
speech signal using Linear Prediction (LP) analysis [22]. In LP
analysis each sample is predicted as a linear combination of
the pastp samples, wherep is the order of prediction. Ifs(n)
is the speech signal sample atnth instant, then its predicted
value is given by

ŝ(n) = −
p∑

k=1

aks(n− k), (4)

where {ak} are the LP coefficients. The error between the
speech sample and its predicted value is given by

e(n) = s(n)− ŝ(n) = s(n) +
p∑

k=1

aks(n− k). (5)
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Fig. 1. (a) Speech waveform, (b)10th order LP residual and (c) Hilbert
envelope of the LP residual for a segment of speech signal collected over a
close-speaking microphone (mic-0).

The optimal values of the Linear Prediction Coefficients
(LPCs) can be obtained by minimizing the squared error over
an analysis frame of about 10-30 ms. These LPCs define the
inverse filter given by

A(z) = 1 +
p∑

k=1

akz−k. (6)

Passing the speech signal through this inverse filter is equiva-
lent to using the optimal values of LPCs in Eq.(5), and hence
the minimum error signal is the LP residual signal denoted
by e(n). The LP residual mostly contains information about
the excitation source. The most important information about
the excitation source is the sequence of epochs in the case of
voiced speech.

Speech signals are collected using a microphone placed
close to the speaker, which here after will be termed asclose-
speaking microphone(mic-0) and two other microphones (say,
mic-1 and mic-2), placed at a distance (distant microphones)
in an office room of dimension5.67× 4.53× 2.68 m with an
average reverberation time of about 0.2 sec and noise level
of about 40-50 dB. All the signals are sampled at 8 kHz
and stored as 16 bit numbers. The microphones signals are
shown in Figs.1(a), 2(a) and 3(a), respectively. The two distant
microphones are placed at a distance of about 2.75 m from
the speaker. All the three signals differ from one another. The
low Signal-to-Noise Ratio (SNR) of the signals collected at
the distant microphones can be seen from the amplitudes of
signals in Figs.2(a) and 3(a) in relation to the signal in Fig.1(a).
The 10th order LP residuals derived from the speech signals
of mic-0, mic-1 and mic-2 are shown in Figs.1(b), 2(b) and
3(b), respectively. The LP residual signals in Figs.2(b) and
3(b) also reflect the low SNR characteristics of the signals at
mic-1 andmic-2.

The time-delay may be estimated by locating peak in
the cross-correlation function of signals received by two
microphones. Due to degradation caused by noise and room
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Fig. 2. (a) Speech waveform, (b)10th order LP residual and (c) Hilbert
envelope of the LP residual for a segment of speech signal collected over
mic-1, which is placed at a distance of about 2.75 m from the speaker.
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Fig. 3. (a) Speech waveform, (b)10th order LP residual and (c) Hilbert
envelope of the LP residual for a segment of speech signal collected over
mic-2, which is placed at a distance of about 2.75 m from the speaker.

reverberation, the signal received at one microphone will not
simply be a delayed version of the other. If speech signals
are directly used for computing the cross-correlation function,
then the correlation peak may not be prominent and distinct
due to effects of noise and reverberation on the spectra of
speech signals. The effects of noise and reverberation are
somewhat reduced around the epochs in the LP residual, where
the residual error is large. Note that the relative epoch locations
are not affected by the degradations. Therefore, it is possible
to obtain a peak in the cross-correlation of LP residuals that
corresponds mostly to the correlated components around the
epochs in LP residuals. Although, due to inverse filtering,
noise is enhanced in the high frequency region in the spectrum
of LP residual, this will have little effect on the peak in the
cross-correlation, since the noise at the two microphones are
not correlated.
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Fig. 4. Cross-correlation function for different cases for 50 ms voiced speech
segments frommic-1 and mic-2: (a) Speech signals, (b) GCC with PHAT
weighting, (c)10th order LP residuals, and (d) Hilbert envelopes of the LP
residuals. PSR refers to peak-to-sidelobe ratio, which is computed for the
largest peak in each cross-correlation function.

In each pitch period major excitation occurs at the epoch
corresponding to the instant of glottal closure. Around each
epoch the prediction will be poor, and hence the error is large
in the residual. However, the amplitudes of the residual signal
around each epoch depend on the phase of the signal [20]. This
causes random fluctuation in amplitudes, which may lead to
ambiguity in the location of the peak in the cross-correlation
function. Therefore, instead of using the LP residual directly,
the Hilbert envelope of the LP residual can be used [20]. The
Hilbert envelope of the LP residuale(n) is defined as

h(n) =
√

e2(n) + e2
h(n), (7)

where eh(n) is the Hilbert transform ofe(n) [23]. The
Hilbert transform is obtained by interchanging the real and
imaginary parts of the Discrete Fourier Transform (DFT) of
e(n), and then taking the inverse DFT. A 1024 point DFT
or higher is used throughout this study for computing the
Hilbert envelope. That is, the residual signal block size is 1024
points or more for computing Hilbert envelope. Figs.1(c), 2(c)
and 3(c) show the Hilbert envelopes of the LP residuals for
speech signals frommic-0, mic-1 andmic-2, respectively. The
ambiguity present around epochs in the LP residual is reduced
significantly in the Hilbert envelope. The epoch locations are
also clearly visible in the Hilbert envelopes of the LP residuals.

The time-delay between speech signals at a pair of micro-
phones is estimated by computing the cross-correlation of the
Hilbert envelopes of the LP residuals. For every frame (size in
the range 50 ms to 500 ms), the cross-correlation function is
computed. The choice of frame size depends on the accuracy
of tracking. Smaller frame size will yield better tracking.
But larger frame size will yield accurate delay estimation.
In any case each frame should contain at least a few (about
5) pitch periods to obtain good estimate of time-delay. The
displacement of the peak with respect to the center of cross-
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Fig. 5. Cross-correlation function for different cases for 50 ms unvoiced
speech segments frommic-1 and mic-2: (a) Speech signals, (b) GCC with
PHAT weighting, (c)10th order LP residuals, and (d) Hilbert envelopes of
the LP residuals. PSR refers to peak-to-sidelobe ratio, which is computed for
the largest peak in each cross-correlation function.

correlation function is the desired time-delay.
To compare different methods we define the quantityPeak-

to-Sidelobe Ratio(PSR) as the peak value divided by the
standard deviation of 40 samples around the peak, excluding
5 samples on either side of the peak [24]. The PSR measure
gives the strength of the main peak in relation to the values
around the peak. The choice of 40 samples is quite arbitrary.
Fig.4(a) shows the cross-correlation function between two 50
ms speech segments frommic-1 and mic-2. The PSR values
are also given in the figure. The PSR value for speech signal
is 5.52. Fig.4(b) shows the cross-correlation function obtained
by GCC with PHAT weighting for the same two segments
[13]. It can be seen that the PSR is larger than for Fig.4(a).
The disadvantage of the PHAT weighting is that it emphasizes
the noise samples, and hence it works well only when the
noise level is low. Fig.4(c) shows the cross-correlation function
for the 10th order LP residuals of the two speech segments.
The plot looks similar to that for the GCC case. Fig.4(d)
shows the cross-correlation function for the Hilbert envelopes
of the LP residuals. The use of the Hilbert envelopes produces
a significantly high value of PSR, compared to the PSR
values of the three previous cases. This is because, in the
Hilbert envelopes of the LP residuals, the high SNR portions
correspond to the major excitations (epochs) of the vocal tract
system. The high amplitude values at the epochs in the signal
dominate the computation of the cross-correlation function.
Note that the time-delay is estimated using only the main
peak in the cross-correlation function. The other large peaks
in Fig.4(d) are due to the pitch period. Since the PSR value
computed from the Hilbert envelopes of the LP residuals is
high for a given voiced segment, we use the PSR value for
each frame to derive a normalized weight function in order
to compare the bias, variance and Root Mean Square Error
(RMSE) for each of the methods.

Fig.5 shows the cross-correlation functions for a 50 ms
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Fig. 6. Top view of the simulated room used to evaluate the proposed time-
delay estimation method.

unvoiced segment. Even for unvoiced segment the PSR value
is high when Hilbert envelope of LP residual is used. But
the PSR value depends on the strength of the bursts in the
unvoiced segment. Note that the bursts need not be periodic.
Hence for unvoiced segments also the Hilbert envelope is
useful for obtaining a correlated peak with PSR value higher
than by other methods.

III. C OMPARISON WITH OTHER METHODS

In this section time-delays estimated using the excitation
source information are compared with those obtained from
other methods. In particular, we compare the results by
the proposed method with the results from the GCC with
PHAT weighting [13], GCC with ML weighting [14], and
Brandstein’s pitch-based weighting [18] methods. The relative
performance of the proposed method is evaluated using a
series of Monte Carlo trials in a simulated rectangular room
of dimension5.6 × 4.5 × 2.6 m as illustrated in Fig.6. The
microphones are assumed to have an omnidirectional pattern.
The source is placed at a distance of2.0 m from the center of
microphone pair which are1 m apart. Simulation studies are
made for four different source positions, each corresponding
to a different Direction of Arrival (DOA) as shown in Fig.6.
The DOA is the angle between the line joining the source
to the center of the microphone pair, and the normal to the
line joining the two microphones at the center of the micro-
phone pair. The four positions of the source shown in Fig.6
correspond to DOAs of15o, 30o, 60o and80o. The simulated
walls are plane reflective surfaces with frequency independent
reflection coefficients. The impulse response between any two
points in the room is generated using Allen and Berkley’s
image method [25]. The impulse response is convolved with
the input signal to simulate the effect of room reverberation1.

1The non-physical behavior of the Allen and Berkley’s image method at
zero frequency is avoided by using a low cut-off (1 percent of the sampling
frequency) high pass filter [25].
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Fig. 7. (a) Sample speech waveform with reverberation of 100 ms and SNR
30 dB. (b) The corresponding PSR weighting function for a framesize of 100
ms with a shift of 10 ms. The PSR was computed for the proposed method.

The simulation studies are carried out for reverberation times
varying from 0 to 0.3 sec. The reflection coefficientβ for a
given room dimension and reverberation time are related by
the Eyring’s formulaβ = exp(−13.82/c[L−1

x +L−1
y +L−1

z ]T )
[26], whereLx, Ly and Lz are the dimensions of the room,
T is reverberation time in seconds andc is speed of sound in
air (342 m/s).

Speech recorded over a close-speaking microphone in noise
free conditions and sampled at 8 kHz is used in these studies.
The speech signal is convolved with the impulse response
of the room to derive the reverberant signal. The SNR of
reverberant signal is then varied from 0 to 50 dB by adding
zero mean white Gaussian noise to the speech signal. The
resulting degraded speech signal is segmented into frames of
200 ms with a shift of 50 ms. Each segment is multiplied with
a Hanning window [19]. The time-delay is estimated for each
frame using the proposed method, and by the GCC method
with PHAT, ML and Brandstein’s pitch based2 weighting.

The performance of the time-delay estimation method is
evaluated by calculating the bias, variance and Root Mean
Square Error (RMSE) for different room impulse responses
and SNR values. In each of the simulations the actual time-
delay can be calculated corresponding to a given DOA. Often
noise and some unvoiced segments give large random error,
and thus these segments contribute significantly to the esti-
mated bias, variance and RMSE. To reduce the contribution
due to these segments, the knowledge of the PSR value of each
frame is used. The PSR values are relatively high in voiced
regions, and low in some unvoiced and noise regions. The
PSR values computed by the proposed method are used for
deriving a weight function. A sample weight function is shown
in Fig. 7(b) for the speech waveform shown in Fig. 7(a). The
errors in the estimated time-delays by all the four methods
are weighted for computing the bias, variance and RMSE
values. The bias, variance and RMSE values given for different
cases are computed by averaging the results obtained from 100
different simulations.

Figs.8, 9 and 10 show the bias (in number of samples),
variance (in number of samples square) and RMSE (in number
of samples), respectively for a DOA of15o. The SNR and the

2For the Brandstein’s pitch based method [18] we estimate the pitch directly
from the clean speech signal rather than the reverberant noisy signal. As a
result there will not be errors due to error in the pitch estimation.
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Fig. 8. Comparison of absolute bias (in number of samples) for the four
methods: GCC-PHAT, GCC-ML, Brandstein’s pitch based, and the proposed
method. The direction of arrival is15o and the SNR is varied from 0dB to
50dB. Four different reverberation times are considered: (a) 0 sec, (b) 0.1
sec, (c) 0.2 sec and (d) 0.3 sec. The scale on y-axis in each of the subplots
is different.
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Fig. 9. Comparison of the error variance (in number of samples square) for
the four methods: GCC-PHAT, GCC-ML, Brandstein’s pitch based, and the
proposed method. The direction of arrival is15o and the SNR is varied from
0dB to 50dB. Four different reverberation times are considered: (a) 0 sec, (b)
0.1 sec, (c) 0.2 sec and (d) 0.3 sec. The scale on y-axis in each of the subplots
is different.

reverberation time, respectively, are varied from 0 to 50 dB
and 0 to 0.3 sec. For very low SNR, the GCC-ML performs
better than all the other methods (see 0-10 dB regions in
all the plots). The GCC-ML weighting has been derived as
the optimal estimator when the noise is Gaussian. Since in
our simulations we use the Gaussian noise model, it is not
surprising that GCC-ML performs the best. For high SNR and
low reverberation, GCC-ML, GCC-PHAT and the Brandstein’s
pitch based method perform equally well. The Brandstein’s
pitch based method performs slightly better than the GCC-
PHAT method, and the GCC-PHAT performs better than the
GCC-ML. The proposed method performs better than all these
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Fig. 10. Comparison of RMSE (in number of samples) for the four methods:
GCC-PHAT, GCC-ML, Brandstein’s pitch based, and the proposed method.
The direction of arrival is15o and the SNR is varied from from 0dB to 50dB.
Four different reverberation times are considered: (a) 0 sec, (b) 0.1 sec, (c)
0.2 sec and (d) 0.3 sec. Note that the scale on y-axis in each of the subplots
is different.

0 10 20 30 40 50
0

5

10

15

20

25

30
(a) Reverberation time= 0.0 sec

SNR (dB)

%
 D

IS
C

R
E

P
A

N
C

IE
S

GCC−PHAT
GCC−ML
Proposed
Brandstein

0 10 20 30 40 50
0

5

10

15

20

25

30
(b) Reverberation time= 0.1 sec

SNR (dB)

%
 D

IS
C

R
E

P
A

N
C

IE
S

GCC−PHAT
GCC−ML
Proposed
Brandstein

0 10 20 30 40 50
0

5

10

15

20

25

30
(c) Reverberation time= 0.2 sec

SNR (dB)

%
 D

IS
C

R
E

P
A

N
C

IE
S

GCC−PHAT
GCC−ML
Proposed
Brandstein

0 10 20 30 40 50
0

5

10

15

20

25

30
(d) Reverberation time= 0.3 sec

SNR (dB)

%
 D

IS
C

R
E

P
A

N
C

IE
S

GCC−PHAT
GCC−ML
Proposed
Brandstein

Fig. 11. Comparison of Percentage discrepancies for the four methods:
GCC-PHAT, GCC-ML, Brandstein’s pitch based, and the proposed method.
The direction of arrival is15o and the SNR is varied from 0dB to 50dB. Four
different reverberation times are considered: (a) 0 sec, (b) 0.1 sec, (c) 0.2 sec
and (d) 0.3 sec.

three methods (see, 20-50 dB regions in Figs.8, 9 and 10
(a) and (b)). For low SNR and high reverberation GCC-ML
seems to be performing better than GCC-PHAT (see, 0-10 dB
regions in Figs.8, 9 and 10 (c) and (d)). For high SNR and
high reverberation the proposed method outperforms all the
other three methods (see, 10-50 dB regions in Figs.8, 9 and
10 (c) and (d)). Thus it can be concluded that the performance
of the proposed method is consistently equal to, or better than,
the best performing of the three methods.

One more metric, namely,percentage discrepancyis intro-
duced, which is defined as the percentage of trials for which
the absolute error in the estimated delay is greater than a
given threshold (±20o in the DOA). Fig.11 shows percent-
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Fig. 12. Comparison of RMSE (in number of samples) for the four methods:
GCC-PHAT, GCC-ML, Brandstein’s pitch based, and the proposed method for
reverberation time 0.3 sec corresponding to the Direction of Arrival (DOA)
(a) 30o and (b)60o.
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Fig. 13. Comparison of RMSE (in number of samples) for the four methods:
GCC-PHAT, GCC-ML, Brandstein’s pitch based, and the proposed method.
The direction of arrival is15o and the SNR is varied from from 0dB to 50dB.
Four different reverberation times are considered: (a) 0 sec, (b) 0.1 sec, (c)
0.2 sec and (d) 0.3 sec. Colored noise was used for these results. Note that
the scale on y-axis in each of the subplots is different.

age discrepancies in the estimated delays for the proposed
and the GCC methods for the DOA corresponding to15o.
From Fig.11(a) it can be seen that all the three methods
perform equally well for the zero reverberation case. As the
reverberation increases, the GCC-PHAT method gives lower
discrepancies compared to the GCC-ML method for high
SNR values. The proposed method gives significantly fewer
discrepancies for all the SNR values.

Similar trends in bias, variance, RMSE and percentage
discrepancies were observed for the experiments with DOAs
30o and 60o. For illustration, we have given the RMSE for
the case of reverberation time of 0.3 sec in Fig.12. Similar
experiments were conducted using colored noise obtained by
band pass filtering the white noise. Figs.13 and 14 show the
RMSE and percentage discrepancies, respectively, for a DOA
of 15o for colored noise. In all these cases the proposed
method performs better than other methods. For the band pass
filtered noise the GCC-ML performs consistently worse than
the other.
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Fig. 14. Comparison of Percentage discrepancies for the four methods:
GCC-PHAT, GCC-ML, Brandstein’s pitch based, and the proposed method.
The direction of arrival is15o and the SNR is varied from 0dB to 50dB. Four
different reverberation times are considered: (a) 0 sec, (b) 0.1 sec, (c) 0.2 sec
and (d) 0.3 sec. Colored noise was used for these results. Note that the scale
on y-axis in each of the subplots is different.

IV. L OCALIZATION OF SPEAKER IN A REAL

ENVIRONMENT

Localization of speaker in an acoustical environment in-
volves two steps. The first step is estimation of time-delays
between pairs of microphones. The next step is to use these
delays to estimate the location of speaker.

The speaker localization problem may be formulated as
follows: Let there beM pairs of microphones. Letm1

i andm2
i

for i ∈ [1,M ] be the vectors representing spatial coordinates
(x, y andz) of two microphones in theith pair. Let the source
be located ats. The actual delay associated with a source at
s and theith pair of microphones is given by,

ti(s) =
|s−m1

i | − |s−m2
i |

c
, (8)

wherec is the speed of propagation of sound (c = 342 ms−1 at
room temperature). The speed of sound in a given acoustical
medium is assumed to be constant. Letτi be the estimated
time-delay. If the estimated time-delay is corrupted by zero-
mean additive white Gaussian noise with known variance
v(τi), then τi is normally distributed with meanti(s) and
variancev(τi):

τi ∼ N(ti(s), v(τi)). (9)

Assuming that each of the time-delays is independently cor-
rupted by a zero-mean additive white Gaussian noise, the
likelihood function can be written as

p(τ1, τ1, ...., τM ; s) =
M∏

i=1

1√
2πv(τi)

exp[
−(τi − ti(s))2

2v(τi)
].

(10)
The Maximum Likelihood(ML) location estimate (ŝML)

is the position which maximizes the log likelihood ratio, or
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equivalently which minimizes

JML(s) =
M∑

i=1

(τi − ti(s))2

v(τi)
(11)

This does not have a closed form solution for the source
position, since it is a nonlinear function ofs. Nonlinear
optimization methods are needed to solve this problem. In our
experiments we used the Gauss-Newton nonlinear least square
method to minimize this function [27]. The initial guess was
set at the center of the room.

In order to study the effectiveness of the proposed method
for speaker localization in noisy and reverberant environment,
an 8 element microphone array is setup in an office room of
dimension5.67×4.53×2.68 m. The reverberation time of the
room is approximately 0.2 sec, and the noise level in the room
was about 40-50 dB. Fig.15(a) shows the actual microphone
setup in the room, and Fig.15(b) shows the schematic of room
and the positions of microphones3.

For all the experiments speaker was instructed to move
in the room reading a text at his normal level of speaking.
In order to validate the results, speaker was asked to move
in a predetermined path with known coordinates. The actual
path for his movement was marked on the floor of room.
The speaker moved in such a way that he was always facing
the microphones. In each case as the speaker moved, the
localization error, defined as the distance between the actual
position of speaker and the estimated position of speaker, was
plotted. The delays were estimated using the proposed method
and the GCC-PHAT method. Frame lengths of 200 ms and 500
ms, each with a shift of 50 ms were used.

The following three cases were considered for study: (1)
Stationary speaker. (2) Speaker moving from one end of
room towards the microphones. (3) Speaker moving from one
end of room towards the microphones, and then from the
microphones toward the other end of room. Fig.16 shows all
three cases.

Fig. 17 shows the estimated delays as a function of frame
number for one microphone pair (mic-1 andmic-4)) for Case-
2 in Fig. 16, using the proposed and GCC-PHAT methods for
frame lengths of 200 ms and 500 ms, with a frame shift of
50 ms. It can be seen that delay values vary in accordance
with the movement of speaker, though there are a few random
delays. Also it can be seen that the number of random delays
are reduced as the frame size is increased, giving a better
estimate of delays. In particular, the number of random delays
obtained using the proposed method are less as compared to
the GCC-PHAT method.

Figs. 18 and 19 show the actual and the estimated (x, y, z)
coordinates for Case-2 by proposed and GCC-PHAT methods,
for frame lengths of 200 ms and 500 ms, respectively. In
these plots the actual path is shown using a solid line, and
the estimated path is shown using dots. It can be seen that
the estimated path follows the actual path more closely for the

3The microphones are electret microphones. Data acquisition is done using
the Power DAQ board PD-MF-16-330/12L. The microphones are connected
to the board through a custom-built pre-amplifier. Signal from each channel
is sampled at 8 kHz sampling frequency.
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Fig. 17. Estimated delay as a function of frame number for one microphone
pair (mic-1andmic-4) using, (a) proposed and (b) GCC methods using a frame
size of 200 ms, and (c) proposed and (d) GCC methods using a frame size of
500 ms, both with a frame shift of 50ms for Case-2 (shown in Figure 16(b))

proposed method than for the GCC-PHAT method. Figs.20 and
21 show the localization error as a function of frame number
using the proposed and GCC-PHAT methods for Case-2 and
Case-3. From these plots it can be observed that, for a given
frame size, the localization error is lower for the proposed
method compared to the error obtained by the GCC-PHAT
method. The error is generally lower for frames where signal
energy is high, and also a lower error is obtained when larger
frame sizes are used.

V. CONCLUSIONS

In this paper a method for estimation of time-delays and
speaker localization using the information in the excitation
source of speech production was proposed. Comparison of the
results show that the delay and location parameters estimated
by the proposed method are closer to the actual values than the
parameters estimated from the spectral-based GCC method.
Generally all the correlation-based methods work better when
longer segments are used. The proposed method works even
with smaller segments. Since the proposed method is based
on the information in the source of excitation, the Hilbert
envelope of the LP residual of even four or five pitch peri-
ods may be sufficient for estimating time-delays. In general,
features of the vocal tract system and features of the excitation
source contain significant information about a moving speaker.
The potential of vocal tract system features has already been
established. In this paper the usefulness of excitation source
information is illustrated. An effective way of combining these
two approaches may yield a robust method for localization and
tracking a moving speaker in an adverse acoustic environment.
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Fig. 18. The actual and the estimated locations (x, y andz coordinates in cm)
of the speaker: (a) the proposed method and (b) the GCC method. A frame
size of 200 ms and a frame shift of 50 ms were used for the Case-2 shown in
Figure 16(b). The actual path is shown as solid line, and the estimated path
is shown as dots.
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Fig. 19. The actual and the estimated location (x, y andz coordinates in cm)
of the speaker: (a) the proposed method and (b) the GCC method. A frame
size of 500 ms with frame shift of 50 ms were considered for the Case-2
as shown in Figure 16(b). The actual path is shown as solid line and the
estimated path is shown as dots.
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Fig. 20. The Localization error (in cm) as a function of frame number using
the proposed and GCC methods for frame size of (a) 200 ms and (b) 500 ms
with frame shift of 50 ms for the Case-2 as shown in Figure 16(b).
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Fig. 21. The Localization error (in cm) as a function of frame number using
the proposed and GCC methods for frame size of (a) 200 ms and (b) 500 ms
with frame shift of 50 ms for the Case-3 as shown in Figure 16(c).
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