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Abstract—This paper presents the results of simulation and [1]-[3]. Once the actual position of the speaker is known, the
real room studies for localization of a moving speaker using microphone array can be steered electronically (beamformed)
information about the excitation source of speech production. for high quality speech acquisition. Speaker Localization is

The first step in localization is the estimation of time-delay | ful | i K S hich hf
from speech collected by a pair of microphones. Methods also usetul in a multispeaker scenario In which speech from

for time-delay estimation generally use spectral features that @ particular speaker may need to be enhanced with respect to
correspond mostly to the shape of vocal tract during speech others, or with respect to noise sources.

production. Spectral features are affected by degradations due . . L .
to noise and reverberation. This paper proposes a method for ~ The essential requirement for all the applications mentioned

localizing a speaker using features that arise from the excitation above is the ability of the microphone array to locate a speaker
source during speech production. Experiments were conducted accurately. Broadly three types of methods exist for localiz-
by simulating different noise and reverberation conditions to ing the speaker [11]: (a) Maximizing the Steered Response
compare the performance of the time-delay estimation and source ) .

localization using the proposed method with the results obtained Power_(SRP) of a be_amf(_)rmer, (b) Methods based on h_'gh
using the spectrum-based Generalized Cross-Correlation (GCC) resolution spectral estimation, and (c) Methods based on Time
methods. The results show that the proposed method shows lower Difference of Arrival (TDOA). In the steered beamformer

number of discrepancies in the estimated time-delays. The bias, approach the microphone array is electronically steered to
variance and the root mean square error of the proposed method various locations to search for a peak in the output power.

is consistently equal or less than the GCC methods. The location A simole del d b f histicated
of a moving speaker estimated using the time-delays obtained by Simple delay and sum béamiormer or more sophisticate

the proposed method are closer to the actual values, than those Peamformers which apply filtering can be used. Due to its

obtained by the GCC method. computational complexity and lack of prior knowledge of
Index Terms— Excitation source information, Hilbert envelope, € Source and noise characteristics, this method may not be
time-delay estimation, speaker localization practical for localizing speakers. The second method, based

on the high resolution spectrum estimation, uses the spatio-
spectral correlation matrix derived from the signals received at
the microphones. The high resolution methods are designed for
PPLICATIONS such as videoconferencing [1]-[3]{ar field narrowband stationary signals, and hence it is difficult
hands-free voice communication [4], [5], speech acquio apply them to wideband speech. The most commonly used
sition in automobile environments [6], [7], speech recognitiomethod in practice is the TDOA-based method. In this method
[8], [9], acoustic surveillance and hearing-aid devices [1@he signals received by several microphones are processed to
require the capture of high quality speech from the speakegstimate the time-delays between pairs of microphones. The
The speech signal received from a speaker in such acoustiggimated time-delays can be used to derive the location of the
environments is corrupted both by additive noise and room répeaker.
verberation. One effective way of dealing with such situations ) o o ) )
is to use a set of spatially distributed microphones for record-FOr effective speaker localization, it is essential to obtain a
ing the speech. Some of the above mentioned applications r#Qpd estimate of the time-delay even when the signals are
also require localizing and tracking the moving speaker. FGP'TUPted by noise and reverberation [12]. The time-delay
instance, to keep the speaker in focus in videoconferencing, fA8Y Pe estimated by locating the peak in the cross-correlation
speaker can be localized, and this information can be fed tdUgction of the signals received by a pair of microphones.

video system for actuating the pan-tilt operations of a caméﬂé’wever’ this method is not robust to degradat_ions in_the
signals. Knapp and Carter [13] developed the Maximum Like-
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function R, .., (7) is given by [13] attempts have been made to exploit the characteristics of the
o0 ' excitation source during the production of speech. In this
Ryyy(T) :/ W(w) X1 (w) X5 (w)e?* " dw, (1) paper we show that features based on the excitation source

in speech production are robust to degradations such as noise
where X (w) and X,(w) are the Fourier transforms of theand reverberation. We discuss methods to extract the excitation
microphone signals:; () and z»(t), respectively, andV (w) source information from a speech signal, and show how to
is the weight function. The effect of five different weightuse this information to estimate the time-delay. The proposed
functions, namely, the Roth Impulse Response, the Smoottedthod does not use the periodicity property of voiced speech.
Coherence Transform (SCOT), the Phase Transform (PHATHe method exploits the excitation characteristics of voiced
the Eckart filter and the Maximum Likelihood (ML) weightingspeech, especially the characteristics around the glottal closure
were studied in [13]. instants.

The two most commonly used weight functions are ML and The paper is organized as follows: A method for estima-
PHAT. The ML weight function accentuates the signal passé@n of time-delay using the excitation source information is
to the correlator at frequencies where the Signal-to-Noigeoposed in Section Il. The proposed method is compared
Ratio (SNR) is high [13]. Brandstein et. al. [14] proposed awith GCC-PHAT, GCC-ML and Brandstein’s methods using
approximate ML type weighting for speech applications. Trgimulations, and are discussed in Section lll. In Section IV
approximate weight function is is given by speaker localization is described, and is compared with the

results obtained using the GCC-PHAT method. The paper con-
= X (@)1 Xa ()] (2) cludes with a summary of the present work, and a discussion
- 2 2 2 27 !

[NL(@)P[X2(w)[? + [N2(w) 2] X1 (w)] on possible extensions.
where |N; (w)| and |Ny(w)| are the noise power spectra at
the two microphones, and are assumed to be known durilg T'ME-DELAY ESTIMATION USING EXCITATION SOURCE
the silence interval [14]. We use this weight function in our INFORMATION
simulation studies. This ML weight function performs well Speech is the result of excitation of a time-varying vocal
when the effect of room reverberation is low. tract system with time-varying excitation [19]. The common

As the room reverberation increases, this method sho@’d significant mode of excitation of the vocal tract system is
degradations in performance [12]. Since the spectral char#fee vibration of vocal folds, called glottal vibration, which to a
teristics of the received signal are affected by the multipaftist approximation may be treated as consisting of a sequence
propagation or reverberation in a room, the GCC function & impulses [20]. The characteristics of the dynamic vocal
made more robust by deemphasizing the frequency-dependéagt system are represented by short-time spectral features.
weighting. The Phase Transform is one extreme case where $iiece the signal received at a microphone is affected by
magnitude spectrum is flattened. The PHAT weight functiomoise and the response of room, the received signal contains
Wpr(w) is given by information about the vocal tract system corrupted by different

1 levels of degradations at different microphones. However, it
= o (3) is interesting to note that the relative locations of epochs or

[ X1 (w) X5 (W) instants of significant excitation in the production of speech
By flattening the magnitude spectrum the resulting locati@are not affected by degradations [21]. The epochs in a voiced
of the peak in the GCC function corresponds to the dominasggment correspond to the instants of glottal closure, and their
delay. However, the disadvantage of the PHAT weighting Iscations along the time scale do not change with the impulse
that it places equal emphasis on both low and high SNRsponse of the acoustical environment. In unvoiced segments
regions, and hence works well only when the overall noisdso there may be epochs due to strong bursts of excitation,
level is low. Séphanne and Champagne [15] proposed cepstealen though they may not occur at periodic intervals as in
prefiltering to reduce the effects of reverberation. Benesty [16]e voiced case. But their relative locations are unaffected by
proposed a novel method for time-delay estimation based degradation.
eigenvalue decomposition of the covariance matrix. The excitation source information can be extracted from the

The methods discussed above are applicable to a gensgaech signal using Linear Prediction (LP) analysis [22]. In LP
sound source. Recently, methods have been suggestedafwalysis each sample is predicted as a linear combination of
localization of speaker by modelling the production of speedhe pasty samples, wherg is the order of prediction. 1§(n)

[17], [18]. Brandstein [18] proposed a method based on tigethe speech signal sampleq@tf* instant, then its predicted
knowledge of the periodicity of voiced speech. This methodilue is given by

requires the estimation of pitch, and hence the performance de- P

pends on the robustness of pitch estimation method. Moreover 5(n) = — Z aps(n — k), 4
the method uses the spectral weighting based on the estimated k=1

pitch harmonics. Most of the speech-model-based methaggere {a,} are the LP coefficients. The error between the

use spectral features which correspond approximately to }geech sample and its predicted value is given by
characteristics of the vocal tract system during the production

P
of speech. The spectral features are affected by transmission () = 5(n) — §(n) = s(n) + ZakS(n —k). (5)
k=1

W (w)

WPT (w)

through medium, noise and room reverberation. Not many



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING 3

0.2 | 0.02
0 WMWWW (a) 0
0.2 o -0.02

0.02

0.01
(b) 0
001

0.2 1 1 1 1 1 1 1 1 1 -0.02
5 10 15 20 25 30 35 40 45 50

0.031- 1
151 s
0.02 J‘ MJ 1 (© 1 1 ©
ola Jk e JL ot ‘ s oMt e aturit al\ pni /W
10 5 10 15 20

5 15 20 25 30 35 40 45 50 .2 30 35 40 45 50
Time(ms) Time(ms)

Fig. 1. (a) Speech waveform, (D" order LP residual and (c) Hilbert Fig- 2. (a) Speech waveform, (1p*" order LP residual and (c) Hilbert
envelope of the LP residual for a segment of speech signal collected ove?"ielope of the LP residual for a segment of speech signal collected over
close-speaking microphonenic-0). mic-1, which is placed at a distance of about 2.75 m from the speaker.

The optimal values of the Linear Prediction Coefficients °
(LPCs) can be obtained by minimizing the squared error over °f
an analysis frame of about 10-30 ms. These LPCs define theo.
inverse filter given by

0.02

p
Az) =1+ apz" 6 °*
k=1

0

-0.01

Passing the speech signal through this inverse filter is equivas,,
lent to using the optimal values of LPCs in Eq.(5), and hence
the minimum error signal is the LP residual signal denoted **
by e(n). The LP residual mostly contains information about :
the excitation source. The most important information about
the excitation source is the sequence of epochs in the case of0
VOICGd SpeeCh 5 10 15 20 TimZES(mS) 30 35 40 45 50
Speech signals are collected using a microphone placed
close to the speaker, which here after will be termedlase- Fig. 3. (a) Speech waveform, (D order LP residual and (c) Hilbert
speaking microphongémnic-0) and two other microphones (Say.envelope of the LP residual for a segment of speech signal collected over
mic-1 and mic-2), placed at a distancaliétant microphongs mic-2, which is placed at a distance of about 2.75 m from the speaker.
in an office room of dimensiof.67 x 4.53 x 2.68 m with an
average reverberation time of about 0.2 sec and noise level
of about 40-50 dB. All the signals are sampled at 8 kHzverberation, the signal received at one microphone will not
and stored as 16 bit numbers. The microphones signals si@ply be a delayed version of the other. If speech signals
shown in Figs.1(a), 2(a) and 3(a), respectively. The two distasnte directly used for computing the cross-correlation function,
microphones are placed at a distance of about 2.75 m frahen the correlation peak may not be prominent and distinct
the speaker. All the three signals differ from one another. Tloee to effects of noise and reverberation on the spectra of
low Signal-to-Noise Ratio (SNR) of the signals collected apeech signals. The effects of noise and reverberation are
the distant microphones can be seen from the amplitudessoimewhat reduced around the epochs in the LP residual, where
signals in Figs.2(a) and 3(a) in relation to the signal in Fig.1(athe residual error is large. Note that the relative epoch locations
The 10" order LP residuals derived from the speech signadse not affected by the degradations. Therefore, it is possible
of mic-0, mic-1 and mic-2 are shown in Figs.1(b), 2(b) andto obtain a peak in the cross-correlation of LP residuals that
3(b), respectively. The LP residual signals in Figs.2(b) armbrresponds mostly to the correlated components around the
3(b) also reflect the low SNR characteristics of the signals eppochs in LP residuals. Although, due to inverse filtering,
mic-1 and mic-2 noise is enhanced in the high frequency region in the spectrum
The time-delay may be estimated by locating peak iof LP residual, this will have little effect on the peak in the
the cross-correlation function of signals received by tweross-correlation, since the noise at the two microphones are
microphones. Due to degradation caused by noise and ronot correlated.
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Fig. 4. Cross-correlation function for different cases for 50 ms voiced spee@)’%

segments frommic-1 and mic-2 (a) Speech signals, (b) GCC with PHAT
weighting, (c)10t" order LP residuals, and (d) Hilbert envelopes of the L
residuals. PSR refers to peak-to-sidelobe ratio, which is computed for
largest peak in each cross-correlation function.

5. Cross-correlation function for different cases for 50 ms unvoiced
ech segments fromic-1 and mic-2 (a) Speech signals, (b) GCC with
Ig’HAT weighting, (c)10t" order LP residuals, and (d) Hilbert envelopes of
tiplhe LP residuals. PSR refers to peak-to-sidelobe ratio, which is computed for
E 3 largest peak in each cross-correlation function.

&erelation function is the desired time-delay.

In each pitch period major excitation occurs at the epo . ; ;
P P ) P To compare different methods we define the quarRigk-

corresponding to the instant of glottal closure. Around each _. . o
P g ¢ -Sidelobe RatioPSR) as the peak value divided by the

epoch the prediction will be poor, and hence the error is lar dard deviati ¢ 40 | d th K ludi
in the residual. However, the amplitudes of the residual sig ndard deviation of #9 samples around the peak, exciuding
-gamples on either side of the peak [24]. The PSR measure

around each epoch depend on the phase of the signal [20]. Thi

causes random fluctuation in amplitudes, which may lead res the strength of the main peak in relation to the values

ambiguity in the location of the peak in the cross—correlatio‘?{ound the peak. The choice of 40 samples is quite arbitrary.

function. Therefore, instead of using the LP residual directl ,|g.4(a) shows the cross-correlation function between two 50

the Hilbert envelope of the LP residual can be used [20]. T s speech segments .fromic-l andmic-2 The PSR vaIue;
Hilbert envelope of the LP residualn) is defined as are also given in the figure. The PSR value for speech signal
is 5.52. Fig.4(b) shows the cross-correlation function obtained

h(n) = /62(n) +€e2(n), @) by GCC with PHAT weighting for the same two segments
[13]. It can be seen that the PSR is larger than for Fig.4(a).
where e, (n) is the Hilbert transform ofe(n) [23]. The The disadvantage of the PHAT weighting is that it emphasizes
Hilbert transform is obtained by interchanging the real arttie noise samples, and hence it works well only when the
imaginary parts of the Discrete Fourier Transform (DFT) afioise level is low. Fig.4(c) shows the cross-correlation function
e(n), and then taking the inverse DFT. A 1024 point DFTor the 10" order LP residuals of the two speech segments.
or higher is used throughout this study for computing thEhe plot looks similar to that for the GCC case. Fig.4(d)
Hilbert envelope. That is, the residual signal block size is 10&hows the cross-correlation function for the Hilbert envelopes
points or more for computing Hilbert envelope. Figs.1(c), 2(df the LP residuals. The use of the Hilbert envelopes produces
and 3(c) show the Hilbert envelopes of the LP residuals far significantly high value of PSR, compared to the PSR
speech signals fromic-0, mic-1andmic-2, respectively. The values of the three previous cases. This is because, in the
ambiguity present around epochs in the LP residual is redudeditbert envelopes of the LP residuals, the high SNR portions
significantly in the Hilbert envelope. The epoch locations ammrrespond to the major excitations (epochs) of the vocal tract
also clearly visible in the Hilbert envelopes of the LP residualsystem. The high amplitude values at the epochs in the signal
The time-delay between speech signals at a pair of micdeminate the computation of the cross-correlation function.
phones is estimated by computing the cross-correlation of tNete that the time-delay is estimated using only the main
Hilbert envelopes of the LP residuals. For every frame (size jpeak in the cross-correlation function. The other large peaks
the range 50 ms to 500 ms), the cross-correlation functioniis Fig.4(d) are due to the pitch period. Since the PSR value
computed. The choice of frame size depends on the accuraomputed from the Hilbert envelopes of the LP residuals is
of tracking. Smaller frame size will yield better trackinghigh for a given voiced segment, we use the PSR value for
But larger frame size will yield accurate delay estimatioreach frame to derive a normalized weight function in order
In any case each frame should contain at least a few (abtmtcompare the bias, variance and Root Mean Square Error
5) pitch periods to obtain good estimate of time-delay. THRMSE) for each of the methods.
displacement of the peak with respect to the center of cross¥ig.5 shows the cross-correlation functions for a 50 ms
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The simulation studies are carried out for reverberation times
100 200 300 700 500 varying from 0 to 0.3 sec. The reflection coefficightfor a

sem given room dimension and reverberation time are related by
Fig. 6. Top view of the simulated room used to evaluate the proposed tinfa€ Eyring’s formulad = exp(—13.82/c[L; '+ L'+ L '|T)
delay estimation method. [26], whereL,, L, and L, are the dimensions of the room,

T is reverberation time in seconds ands speed of sound in
) . air (342 m/s).

unvoiced segment. Even for unvoiced segment the PSR valugpeech recorded over a close-speaking microphone in noise
is high when Hilbert envelope of LP residual is used. Bytee conditions and sampled at 8 kHz is used in these studies.
the PSR value depends on the strength of the bursts in g speech signal is convolved with the impulse response
unvoiced segment. Note that the bursts nee_zd not be periijf:.the room to derive the reverberant signal. The SNR of
Hence for unvoiced segments also the Hilbert envelope (is,erberant signal is then varied from O to 50 dB by adding
useful for obtaining a correlated peak with PSR value highggro mean white Gaussian noise to the speech signal. The

450
0

than by other methods. resulting degraded speech signal is segmented into frames of
200 ms with a shift of 50 ms. Each segment is multiplied with
[1l. COMPARISON WITH OTHER METHODS a Hanning window [19]. The time-delay is estimated for each

In this section time-delays estimated using the excitatidf@me using the proposed method, and by the GCC method
source information are compared with those obtained froffth PHAT, ML and Brandstein’s pitch basédweighting.
other methods. In particular, we compare the results by The performance of the time-delay estimation method is
the proposed method with the results from the GCC wittvaluated by calculating the bias, variance and Root Mean
PHAT weighting [13], GCC with ML weighting [14], and Square Error (RMSE) for different room impulse responses
Brandstein’s pitch-based weighting [18] methods. The relatig@d SNR values. In each of the simulations the actual time-
performance of the proposed method is evaluated usingd@ay can be calculated corresponding to a given DOA. Often
series of Monte Carlo trials in a simulated rectangular roofise and some unvoiced segments give large random error,
of dimension5.6 x 4.5 x 2.6 m as illustrated in Fig.6. The and thus these segments contribute significantly to the esti-
microphones are assumed to have an omnidirectional pattéR@ted bias, variance and RMSE. To reduce the contribution
The source is placed at a distance2df m from the center of due to these segments, the knowledge of the PSR value of each
microphone pair which aré m apart. Simulation studies areffame is used. The PSR values are relatively high in voiced
made for four different source positions, each correspondif@gions, and low in some unvoiced and noise regions. The
to a different Direction of Arrival (DOA) as shown in Fig.6.PSR values computed by the proposed method are used for
The DOA is the angle between the line joining the sourdderiving a weight function. A sample weight function is shown
to the center of the microphone pair, and the normal to t#& Fig. 7(b) for the speech waveform shown in Fig. 7(a). The
line joining the two microphones at the center of the micrg2Tors in the estimated time-delays by all the four methods
phone pair. The four positions of the source shown in Fig&e weighted for computing the bias, variance and RMSE
correspond to DOAs 0f5°, 30°, 60° and80°. The simulated values. The bias, variance and RMSE values given for different
walls are plane reflective surfaces with frequency independé&fses are computed by averaging the results obtained from 100
reflection coefficients. The impulse response between any t@ifferent simulations.
points in the room is generated using Allen and Berkley's Figs.8, 9 and 10 show the bias (in number of samples),
image method [25]. The impulse response is convolved wi#driance (in number of samples square) and RMSE (in number
the input signal to simulate the effect of room reverberation of samples), respectively for a DOA @6°. The SNR and the

1The non-physical behavior of the Allen and Berkley’s image method at 2For the Brandstein’s pitch based method [18] we estimate the pitch directly
zero frequency is avoided by using a low cut-off (1 percent of the samplifigpm the clean speech signal rather than the reverberant noisy signal. As a
frequency) high pass filter [25]. result there will not be errors due to error in the pitch estimation.
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Fig. 9. Comparison of the error variance (in number of samples square) fdg- 11. Comparison of Percentage discrepancies for the four methods:
the four methods: GCC-PHAT, GCC-ML, Brandstein’s pitch based, and tfgCC-PHAT, GCC-ML, 'Brzt)ndstems pitch based, and the proposed method.
proposed method. The direction of arrivallis® and the SNR is varied from The direction of arrival id5° and the SNR is varied from 0dB to 50dB. Four

0dB to 50dB. Four different reverberation times are considered: (a) 0 sec, @ifferent reverberation times are considered: (a) 0 sec, (b) 0.1 sec, (c) 0.2 sec
0.1 sec, (c) 0.2 sec and (d) 0.3 sec. The scale on y-axis in each of the sub#9g (d) 0.3 sec.
is different.

three methods (see, 20-50 dB regions in Figs.8, 9 and 10
reverberation time, respectively, are varied from 0 to 50 d@) and (b)). For low SNR and high reverberation GCC-ML
and 0 to 0.3 sec. For very low SNR, the GCC-ML performseems to be performing better than GCC-PHAT (see, 0-10 dB
better than all the other methods (see 0-10 dB regions riegions in Figs.8, 9 and 10 (c) and (d)). For high SNR and
all the plots). The GCC-ML weighting has been derived dsgh reverberation the proposed method outperforms all the
the optimal estimator when the noise is Gaussian. Sincedther three methods (see, 10-50 dB regions in Figs.8, 9 and
our simulations we use the Gaussian noise model, it is rif (c) and (d)). Thus it can be concluded that the performance
surprising that GCC-ML performs the best. For high SNR arnf the proposed method is consistently equal to, or better than,
low reverberation, GCC-ML, GCC-PHAT and the Brandsteinthe best performing of the three methods.
pitch based method perform equally well. The Brandstein’s One more metric, namelyercentage discrepandy intro-
pitch based method performs slightly better than the GC@uced, which is defined as the percentage of trials for which
PHAT method, and the GCC-PHAT performs better than thbe absolute error in the estimated delay is greater than a
GCC-ML. The proposed method performs better than all thegen threshold £20° in the DOA). Fig.11 shows percent-
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3 —— Proposed 0.015 —— Proposed Fig. 14. Comparison of Percentage discrepancies for the four methods:
w - Brandstein - Brandstein GCC-PHAT, GCC-ML, Brandstein’s pitch based, and the proposed method.
‘% 2 g ooy The direction of arrival isl5° and the SNR is varied from 0dB to 50dB. Four
\ o N different reverberation times are considered: (a) O sec, (b) 0.1 sec, (c) 0.2 sec
EERN 0.005 T T ey and (d) 0.3 sec. Colored noise was used for these results. Note that the scale
= on y-axis in each of the subplots is different.
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(c) Reverberation time= 0.2 sec (d) Reverberation time= 0.3 sec
10 10
. e ggg;;'gﬂ \ o ggg;;{;ﬂ IV. LOCALIZATION OF SPEAKER IN A REAL
- Brandatein I~ Brandstein ENVIRONMENT
e 7 ISP
WA Z4 P Localization of speaker in an acoustical environment in-
T 3 =F 9 g i i i i i
Bo s 2 volves two steps. The first step is estimation of time-delays
S-S between pairs of microphones. The next step is to use these
0 0
0 10 20 30 40 50 0 10 20 30 40 50 . .
SNR (@8) SNR (dB) delays to estimate the location of speaker.

The speaker localization problem may be formulated as
Fig. 13. Comparison of RMSE (in number of samples) for the four method P P y

: i . . 1 2
GCC-PHAT, GCC-ML, Brandstein's pitch based, and the proposed methcf&’."ows- Let there bel/ pairs of m|cr0ph0_nes- Let_“i andm_i
The direction of arrival i15° and the SNR is varied from from 0dB to 50dB. for ¢ € [1, M| be the vectors representing spatial coordinates

Four different reverberation times are considered: (a) O sec, (b) 0.1 sec,&%) andz) of two microphones in theth pair. Let the source
0.2 sec and (d) 0.3 sec. Colored noise was used for these results. Note ’aty

the scale on y-axis in each of the subplots is different. be located as. The actual delay associated with a source at
s and thei?” pair of microphones is given by,

s —mi| s - m|

ti(s) ; (8)

C

age discrepancies in the estimated delays for the proposed
and the GCC methods for the DOA correspondingl§. wherecis the speed of propagation of sourd= 342 ms~! at
From Fig.11(a) it can be seen that all the three methogtsom temperature). The speed of sound in a given acoustical
perform equally well for the zero reverberation case. As thaedium is assumed to be constant. ketbe the estimated
reverberation increases, the GCC-PHAT method gives low@he-delay. If the estimated time-delay is corrupted by zero-
discrepancies compared to the GCC-ML method for highean additive white Gaussian noise with known variance
SNR values. The proposed method gives significantly fewgfr;), then 7; is normally distributed with mear;(s) and
discrepancies for all the SNR values. variancev(r;):

Similar trends in bias, variance, RMSE and percentage 7i ~ N(t;(s),v(73)). 9)
discrepancies were observed for the experiments with DOAs
30° and 60°. For illustration, we have given the RMSE forAssuming that each of the time-delays is independently cor-
the case of reverberation time of 0.3 sec in Fig.12. Simil&pted by a zero-mean additive white Gaussian noise, the
experiments were conducted using colored noise obtainedliglihood function can be written as
band pass filtering the white noise. Figs.13 and 14 show the Y )
RMSE and percentage discrepancies, respectively, for a DO (T2, Ty oy Tar3 8) = H 1 exp[—(n —ti(s)) ).
of 15° for colored noise. In all these cases the propose i1V 2mo(T) 2v(7;)
method performs better than other methods. For the band pass (10)
filtered noise the GCC-ML performs consistently worse than The Maximum Likelihood(ML) location estimatesf;)
the other. is the position which maximizes the log likelihood ratio, or
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equivalently which minimizes

60 60
M 2 2 0
(Ti —ti(S)) - 40 2 40 “r
Tur(s) =) = (1) e 3
— v(7;) n 20 - & 20 e
=1 < . _,n"j - . CL e
. . S b e ST £ sl
This does not have a closed form solution for the sourcg 0™ 7" :: 2 - g Ok, e
position, since it is a nonlinear function of Nonlinear ©-20f .-~ Q20f .o .
optimization methods are needed to solve this problem. In our 100 200 0 100 200

experiments we used the Gauss-Newton nonlinear least square
method to minimize this function [27]. The initial guess was

(@)

Frame Number

©

(b)

Frame Number

(d)

(o]
o

set at the center of the room. a
In order to study the effectiveness of the proposed methcel 4o
for speaker localization in noisy and reverberant environmeng, 20 P
an 8 element microphone array is setup in an office room at ob -+ .- L
dimension5.67 x 4.53 x 2.68 m. The reverberation time of the g | = - )
room is approximately 0.2 sec, and the noise level in the room %°|. ' ) =
was about 40-50 dB. Fig.15(a) shows the actual microphone o 100 200 0 100 200
setup in the room, and Fig.15(b) shows the schematic of room Frame Number Frame Number
and the positions of microphonés
For all the experiments speaker was instructed to moVig. 17. Estimated delay as a function of frame number for one microphone

. . . . _pair (mic-1andmic-4) using, (a) proposed and (b) GCC methods using a frame
in the room read'ng a text at his normal level of speak'ngize of 200 ms, and (c) proposed and (d) GCC methods using a frame size of

In order to validate the results, speaker was asked to m®e® ms, both with a frame shift of 50ms for Case-2 (shown in Figure 16(b))
in a predetermined path with known coordinates. The actual

path for his movement was marked on the floor of room. )
The speaker moved in such a way that he was always fachl posed method than for the GCC-PHAT method. Figs.20 and

the microphones. In each case as the speaker moved % e'show the localization error as a function of frame number
localization error, defined as the distance between the actuafind the proposed and GCC-PHAT methods for Case-2 and
position of speaker and the estimated position of speaker, e-3. From these plots it can be observed that, for a given
plotted. The delays were estimated using the proposed metlfur&ﬁne size, the localization error is lower for the proposed

and the GCC-PHAT method. Frame lengths of 200 ms and 5Bt¢thod compared to the error obtained by the GCC-PHAT
ms, each with a shift of 50 ms were used. method. The error is generally lower for frames where signal

The following three cases were considered for study: ( ergy is high, and also a lower error is obtained when larger

Stationary speaker. (2) Speaker moving from one end GfMe Sizes are used.
room towards the microphones. (3) Speaker moving from one
end of room towards the microphones, and then from the , . ,
microphones toward the other end of room. Fig.16 shows all!n this paper a method for estimation of time-delays and
three cases. speaker localization using the information in the excitation

Fig. 17 shows the estimated delays as a function of fram@Urce of speech production was proposed. Comparison of the
number for one microphone paimic-1andmic-4)) for Case- results show that the delay and location parameters estimated
2 in Fig. 16, using the proposed and GCC-PHAT methods iy the proposed method are closer to the actual values than the
frame Iengt'hs of 200 ms and 500 ms. with a frame shift g@rameters estimated from the spectral-based GCC method.
50 ms. It can be seen that delay vaILlles vary in accordar%@nera"y all the correlation-based methods work better when
with the movement of speaker, though there are a few rand&ij9¢er segments are used. The proposed method works even
delays. Also it can be seen that the number of random deldydh smaller segments. Since the proposed method is based
are reduced as the frame size is increased, giving a beflBy the information in the source of excitation, the Hilbert
estimate of delays. In particular, the number of random dela§8velope of the LP residual of even four or five pitch peri-

obtained using the proposed method are less as compare§4s May be sufficient for estimating time-delays. In general,
the GCC-PHAT method. features of the vocal tract system and features of the excitation

Figs. 18 and 19 show the actual and the estimated,(z) source contain significant information about a moving speaker.

coordinates for Case-2 by proposed and GCC-PHAT methodd® Potential of vocal tract system features has already been
for frame lengths of 200 ms and 500 ms, respectively. ﬁ:istabllshed.. In this paper the usgfulness of excn_a‘gon source
these plots the actual path is shown using a solid line, amormatmn is |Ilustrateq. An effective way of combln'lnglthese

the estimated path is shown using dots. It can be seen R a_pproache_s may y|eld§1robust method for Ic_Jcallza_mon and
the estimated path follows the actual path more closely for tH@ckmg amoving speaker in an adverse acoustic environment.
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V. CONCLUSIONS
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Fig. 15. (a) Picture showing the actual setup of the microphones. (b) Schematic of the room indicating the positions of the 8 microphones selected for the
study. Microphones 3 and 4 are on the partition.

(a) Case-1 (b) Case-2 (c) Case-3

Fig. 16. Three cases for which the methods were tested: (a) Case-1: Speaker is stationary. (b) Case-2: Speaker moves from one end of the room towards thi
microphones. (c) Case-3: Speaker moves from one end of the room towards the microphones and from the microphones towards the other end of the room.
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Fig. 18. The actual and the estimated locatiang/(andz coordinates in cm) Fig. 19. The actual and the estimated locationy andz coordinates in cm)
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Fig. 20. The Localization error (in cm) as a function of frame number using
the proposed and GCC methods for frame size of (a) 200 ms and (b) 500[11@
with frame shift of 50 ms for the Case-2 as shown in Figure 16(b).
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Fig. 21. The Localization error (in cm) as a function of frame number using
the proposed and GCC methods for frame size of (a) 200 ms and (b) 500 ms
with frame shift of 50 ms for the Case-3 as shown in Figure 16(c).
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