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My research interests lie in the area of statistical machine learning. As a research scientist at

Siemens, my current research is focused on developing novel supervised learning algorithms to
deal with imperfect supervision—especially subjective (crowdsourcing), noisy (multiple instance
learning), and partial label information (survival analysis). This has been motivated by my first
hand experiences dealing with messy real medical data. I am also currently working on empirical

Bayesian methods for sparse high-dimensional prediction problems. My doctoral research focused
on developing fast scalable machine learning algorithms for massive data sets using ideas inspired
from computational physics and computational geometry. I will describe my key research accom-

plishments and my plans for future research in these areas. My research goal is to build a body
of work which is both theoretically well-founded and readily applicable to real-world problems.
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1. LEARNING WITH IMPERFECT SUPERVISION

I started this line of research when after my graduation I joined Siemens Healthcare
as a research scientist. At Siemens I design machine learning algorithms for several
commercially deployed computer aided diagnosis (CAD) products that automati-
cally identify early stage cancer of the lung, colon, and breast based on X-ray, CT,
and MRI images. These products have been commercially deployed in thousands
of hospitals around the world and a resulting paper was the winner of the data
mining practice prize 1 for the best deployed data mining system at KDD 2009.

1Mining Medical Images R. Bharat Rao, Glenn Fung, Balaji Krishnapuram, Jinbo Bi, Murat
Dundar, Vikas C. Raykar, Shipeng Yu, Sriram Krishnan, Xiang Zhou, Arun Krishnan, Marcos
Salganicoff, Luca Bogoni, Matthias Wolf, Anna Jerebko, and Jonathan Stoeckel. Proceedings of

the Third Workshop on Data Mining Case Studies and Practice Prize, Fifteenth Annual SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), Paris, June 2009.

http://www.umiacs.umd.edu/~vikas/
http://www.medical.siemens.com/webapp/wcs/stores/servlet/ProductDisplay~q_catalogId~e_-1~a_catTree~e_100010,1008631,1029622,1029618~a_langId~e_-1~a_productId~e_200648~a_storeId~e_10001.htm
http://www.dataminingcasestudies.com/
http://www.umiacs.umd.edu/~vikas/publications/DMCS-CAD-v10.pdf
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Most of the standard off-the-shelf supervised learning algorithms are generally de-
veloped for an ideal world. They often make strong assumptions which make them
less than ideal for applying them directly to real world messy data. For example
training points are often noisily labeled, training samples are not independent and
identically distributed, the samples can be biased, it is not clear how to get the
objective ground truth, the desired performance metric may be quite different etc.
For these reasons most of the basic assumptions in developing classification algo-
rithms have to be questioned. Suitable modifications must be made to model these
deviations from the ideal scenarios. This situation lead to my interest in the de-
velopment of new algorithms which give a significant improvement in performance
over off-the-shelf standard classification algorithms under more realistic conditions.
I will describe below my three important contributions in this area—which deal
with subjective, noisy, and partial label information. This line of research has been
motivated by problems in medical imaging—specifically in CAD where the task is
to build a classifier to predict whether a suspicious region on a medical image (like
a X-ray, CT scan, or MRI) is malignant or benign.

1.1 Learning from crowds—Subjective labels

1. Learning From Crowds Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Gerardo H.

Valadez, Charles Florin, Luca Bogoni, and Linda Moy, Journal of Machine Learning
Research, Vol. 11, pp. 1297–1322, April 2010.

2. Supervised Learning from Multiple Experts: Whom to trust when everyone lies a
bit Vikas C. Raykar, Shipeng Yu, Linda Zhao, Anna Jerebko, Charles Florin, Ger-
ardo Valadez, Luca Bogoni, and Linda Moy, Proceedings of the 26th International

Conference on Machine Learning (ICML 2009), pp. 889–896, Montreal, June 2009.

For many supervised learning tasks it may be infeasible (or very expensive) to
obtain objective and reliable labels for training. Instead, we can collect subjective
(possibly noisy) labels from multiple experts or annotators. In practice, there is
a substantial amount of disagreement among the annotators, and hence it is of
great practical interest to address conventional supervised learning problems in
this scenario. For example in the medical imaging domain the actual gold standard
(whether there is cancer or not) can only be obtained from biopsy of the tissue.
Since this is an expensive, invasive, and potentially dangerous process, often systems
are built from labels assigned by multiple radiologists who identify the locations
of malignant lesions. Each radiologist visually examines the medical images and
provides a subjective (possibly noisy) version of the gold standard. The radiologists
come from a diverse pool including luminaries, experts, residents, and novices—
very often there is lot of disagreement among the annotations. For a lot of tasks
the labels provided by the annotators are inherently subjective and there will be
substantial variation among different annotators.
The domain of text classification offers such a scenario. In this context the task

is to predict the category for a token of text. The labels for training are assigned by
human annotators who read the text and attribute their subjective category. With
the advent of crowdsourcing services like Amazon’s Mechanical Turk, CrowdFlσ̂wer,
Games with a Purpose, and reCAPTCHA it is quite inexpensive to acquire labels

http://www.jmlr.org/papers/volume11/raykar10a/raykar10a.pdf
http://conflate.net/icml/paper/2009/96
http://conflate.net/icml/paper/2009/96
https://www.mturk.com
http://crowdflower.com/
http://www.gwap.com/gwap/
http://www.google.com/recaptcha
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from a large number of annotators (possibly thousands) in a short time. In situa-
tions like these, the performance of different annotators can vary widely (some may
even be malicious), and without the actual gold standard, it may not be possible
to evaluate the annotators.

In papers [1] and [2] I propose a probabilistic approach for supervised learning
which addresses the following three issues simultaneously: (1) How to adapt conven-
tional supervised learning algorithms when we have multiple annotators providing
subjective labels but no objective gold standard? (2) How to evaluate systems
when we do not have an absolute gold-standard? (3) A closely related problem–
particularly relevant when there are a large number of annotators—is to estimate
how reliable/trustworthy is each annotator. The commonly used majority voting
scheme uses the labels on which the majority agree as an estimate of the actual
gold standard. These papers propose a Bayesian approach that jointly learns the
classifier, the annotator accuracy, and the unknown true label. The final estimation
is performed by an Expectation Maximization algorithm that iteratively establishes
a particular gold standard, measures the performance of the experts given that gold
standard, and refines the gold standard based on the performance measures. Exper-
imental results indicate that the proposed method is superior to the commonly used
majority voting baseline. A novel feature is that the proposed algorithm learns the
classifier and the ground truth jointly—in a way the classifier is allowed to influence
the ground truth. The method was successfully applied to a model for prediction of
malignancy for breast tumors in MR with subjective assessments from multiple ra-
diologists in the absence of biopsy results. It was also applied to text data collected
from the Amazon’s mechanical turk.

Since the publication of this paper there has been a flurry of interest in the
machine learning/computer vision/natural language processing community in har-
nessing the power of crowds for various tasks (crowdsourcing). Within a year the
paper has received around 25 citations and has been extensively discussed in differ-
ent blogs. This a very fertile ground for further research and introduces a number
of interesting learning problems that have either not been studied or have been
scarcely studied in the past. I am quite interested in forming a research group
around this topic and collaborating with people from different communities like
natural-language processing, computer-vision, medical imaging, astronomy, telera-
diology, etc. where crowdsourcing is becoming quite common. While there are a
lot of practical applications there are still a few fundamental issues that need to be
worked on. For example a key assumption made in [1] and [2] is that conditional
on the true labels the annotators are independent. This assumption is not true
in general and there are some correlations among the labels assigned by multiple
annotators. Since crowdsourcing services pay the annotator for their labeling ser-
vices I would like to analyze the monetary and behavioral aspects of crowdsourcing
services. The amount to be paid can be linked to the performance of the annota-
tor and a general utility based algorithm can be derived. Active learning in this
setup also raisesa very interesting question–Which instance to be labeled by which
annotator? A more practical line of work would be to develop algorithms which
can effectively weed out spammers and malicious/adverserial annotators which are
quite common in crowdsourcing market places.

http://scholar.google.com/scholar?cites=8839874149821364955&as_sdt=800000000005&sciodt=800000000000&hl=en
http://lingpipe-blog.com/2009/06/16/raykar-et-al-2009-supervised-learning-from-multiple-experts-whom-to-trust-when-everyone-lies-a-bit/
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1.2 Multiple instance learning—Noisy labels

3. Bayesian Multiple Instance Learning: Automatic Feature Selection and Inductive
Transfer Vikas C. Raykar, Balaji Krishnapuram, Jinbo Bi, Murat Dundar, and R.
Bharat Rao, Proceedings of the 25th International Conference on Machine Learning

(ICML 2008), pp. 808–815, Helsinki, July 2008.

4. A Multiple Instance Learning Approach toward Optimal Classification of Pathology
Slides Murat Dundar, Sunil Badve, Vikas C. Raykar, Rohit Jain, Olcay Sertel, and
Metin Gurcan Proc. of 20th Int. Conference on Pattern Recognition (ICPR 2010).

[Best Scientific Paper Award in Bioinformatics and Biomedical Applications Track]

The previous work addressed how to deal with the subjective labels. This work
addresses a much more practical issue of a specific kind of mislabeled instance. In a
conventional supervised learning scenario it is always assumed that the label is given
for every instance. However in many practical applications labels are available at
a much higher granularity and are not available for every instance. For example in
a lot of medical imaging applications the radiologist who provides us the ground
truth just marks the location of the lesion. The lesions are often irregular in shape
and are of different sizes. The computer algorithm designed to detect these lesions
produces a lot of training examples which are spatially close to each other. All these
examples point to the same ground truth. A single instance classifier considers all
these examples as positive. However in practice it often happens that there will be
a lot of negatives which mistakenly get labeled as positives.
In the multiple instance learning (MIL) framework the training set consists of

what are known as bags. A bag contains many instances. All the instances in
a bag share the same bag-level label. A bag is labeled positive if it contains at
least one positive instance. A negative bag means that all instances in the bag
are negative. By using a probabilistic AND-OR formulation of the above definition
I designed a novel MIL algorithm in an empirical Bayesian framework that was
also automatically able to identify the relevant feature subset. One interesting
empirical outcome was that the multiple instance model was able to select many
fewer features—almost half the number of features selected by the single instance
approach. This algorithm was clearly superior to the previous MIL algorithms and
was presented at ICML 2008. This was also demonstrated in a paper 2 which was
presented at a digital mammography conference and was written in collaboration
with scientists in Israel.
Recently I also collaborated with researchers from Indiana and Purdue University

where I applied similar MIL ideas for automated classification of pathology slides.
This paper [4] has been selected as the best scientific paper in the Bioinformatics
and Biomedical Applications track at the 20th International Conference on Pattern
Recognition. There were 2140 submissions across six tracks and one paper from
each track has received this award.

2Multiple instance learning improves CAD detection of masses in digital mammography Balaji
Krishnapuram, Jonathan Stoeckel, Vikas C. Raykar, R. Bharat Rao, Philippe Bamberger, Eli

Ratner, Nicolas Merlet, Inna stainvas, Menahem Abramov, and Alexandra Manevitch, Proc. of
the 9th int. workshop on Digital Mammography (IWDM), pp. 350–357, Tucson, AZ, July 2008.

http://www.umiacs.umd.edu/~vikas/publications/raykar_ICML2008_MIL.pdf
http://www.umiacs.umd.edu/~vikas/publications/raykar_ICML2008_MIL.pdf
http://www.umiacs.umd.edu/~vikas/publications/murat_ICPR_2010.pdf
http://www.umiacs.umd.edu/~vikas/publications/murat_ICPR_2010.pdf
http://www.medicalnewstoday.com/articles/198324.php
http://www.umiacs.umd.edu/~vikas/publications/raykar_IWDM_2008_MammoCAD.pdf
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1.3 Survival analysis—Incomplete labels

5. On Ranking in Survival Analysis: Bounds on the Concordance Index Vikas C.
Raykar, Harald Steck, Balaji Krishnapuram, Cary Oberije, Philippe Lambin, Ad-
vances in Neural Information Proc. Systems (NIPS), vol. 20, pp. 1209-1216, 2008.

Survival analysis is a well-established field in medical statistics concerned with
analyzing/predicting the time until the occurrence of an event of interest, e.g.,
death, onset of a disease, or failure of a machine. I started looking into survival
analysis when I was looking into data concerning the survival time of non-small
cell lung cancer patients, which we analyzed as part of our collaboration with the
MAASTRO clinic. My machine learning background helped me to discover some
connections between classical survival analysis and the ranking literature in machine
learning. This paper shows that classical survival analysis involving censored data
can naturally be cast as a ranking problem. The concordance index (CI), which
quantifies the quality of rankings, is the standard performance measure for model
assessment in survival analysis. In contrast, the standard approach to learning the
popular proportional hazard model is based on Cox’s partial likelihood. The paper
derives two bounds on the CI and optimizes them directly. I also explain why a
method designed to maximize the Cox’s partial likelihood also ends up maximizing
the CI.

2. SPARSITY IN HIGH DIMENSIONAL SETTINGS

Recently I have also started working on high-dimensional prediction and estimation
problems, usually referred to as the large p, small n (p ≫ n) paradigm, p being
the dimension of the model and n the sample size. With the advent of modern
scientific technology like microarrays and fMRI machines such high dimensional
data have become quite common and pose a challenge to the conventional machine
learning/statistical inference techniques.
In high dimensional scenarios it is desirable to obtain sparse solutions. A sparse

solution generally helps in better interpretation of the model and more importantly
leads to better generalization on unseen data. We developed two different tech-
niques to achieve sparsity in high dimensional scenarios–one is via a mixture prior
and another via a mixture loss function. Both these methods are developed in the
empirical Bayesian framework which combines both frequentist and Bayesian ideas.
This research is in collaboration with Dr. Linda Zhao at the department of statis-
tics at University of Pennsylvania. I am quite excited about this line of research
and would like to further explore connections with the multiple hypothesis testing
area currently popular in the statistics and genomics community.

2.1 Mixture prior for adaptive sparsity

6. Nonparametric prior for adaptive sparsity Vikas C. Raykar and Linda H. Zhao In

Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics (AISTATS 2010), JMLR: W&CP 9, pp. 629–636, Italy, May 2010.

For high-dimensional problems various parametric priors (like the zero mean Gaus-

http://books.nips.cc/papers/files/nips20/NIPS2007_0535.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v9/raykar10a/raykar10a.pdf
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sian, Laplace) have been proposed to promote sparse solutions. While parametric
priors have shown considerable success they are not very robust in adapting to
varying degrees of sparsity. This work proposes a discrete mixture prior which is
partially nonparametric. The right structure for the prior and the amount of spar-
sity is estimated directly from the data. The key idea is to assume that there is
a prior on the parameter but to impose no structural assumptions on that prior
distribution and estimate it directly from the data. An iterative EM algorithm
based on weighted non-parametric kernel density estimate is developed to estimate
the sparsity in the signal. Our experiments show that the proposed prior adapts
to sparsity much better than its parametric counterparts. The method is applied
here to classification of high dimensional microarray datasets.

2.2 Mixture loss function for adaptive sparsity

7. Empirical Bayesian thresholding for sparse signals using mixture loss functions Vikas
C. Raykar and Linda H. Zhao To appear in Statistica Sinica.

We developed an empirical Bayesian thresholding rule for the normal mean problem
that adapts well to the sparsity of the signal. As earlier the prior on each mean is
a mixture of an atom of probability at zero, and a Laplace or normal density for
the nonzero part. A novel key element is the use of a mixture loss function that
combines both the Lp loss and the 0−1 loss function. The Bayes procedures under
this loss are explicitly given as thresholding rules and are easy to compute.

3. DOCTORAL RESEARCH: SCALABLE MACHINE LEARNING ALGORITHMS

Huge data sets containing millions of training examples with large number of at-
tributes (tall fat data) are relatively easy to gather. However one of the bottlenecks
for successful inference of useful information from the data is the computational
complexity of modern machine learning algorithms. Most state-of-the-art non-
parametric machine learning algorithms have a computational complexity of either
O(N2) or O(N3), where N is the number of training examples. This has seriously
restricted the use of massive data sets. The bottleneck computational primitive at
the heart of various algorithms is the multiplication of a structured matrix with a
vector, which we refer to as matrix-vector product (MVP) primitive. The goal of
my doctoral research was to speedup up these MVP primitives by fast approximate
algorithms that scale as O(N) and also provide high accuracy guarantees. I used
ideas from computational physics, scientific computing, and computational geome-
try to design these algorithms with the aim of getting getting good enough solutions
as fast as possible. The various fast algorithms that I developed during my doc-
toral dissertation are released under the GNU Lesser General Public License and
have been widely downloaded. The proposed algorithms have been applied to vari-
ous tasks like kernel density estimation, optimal bandwidth estimation, projection
pursuit, Gaussian process regression, SVMs, implicit surface fitting, and ranking.

Weighted superposition of kernels

In most kernel based machine learning algorithms, Gaussian processes, and non-
parametric statistics a key computationally intensive task is to compute a linear

http://www3.stat.sinica.edu.tw/preprint/SS-09-112_1.pdf
http://www.umiacs.umd.edu/~vikas/Software/software.html
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combination of local kernel functions centered on the training data, i.e.,

f(x) =
N∑
i=1

qik(x, xi), (1)

where {xi ∈ Rd, i = 1, . . . , N} are theN training data points, {qi ∈ R, i = 1, . . . , N}
are the weights, k : Rd × Rd → R is the local kernel function, and x ∈ Rd is
the test point at which f is to be computed. For kernel machines (e.g. regu-
larized least squares, support vector machines, kernel regression) f is the regres-
sion/classification function. In case of Gaussian process regression f is the mean
prediction. For non-parametric density estimation it is the kernel density esti-
mate.. Training these models scales as O(N3) since most involve solving the linear
system of equation (K + λI)ξ = y, where K is the N × N Gram matrix where
[K]ij = k(xi, xj). Recently, such nonparametric problems have been collectively re-
ferred to asN -body problems in learning 3, in analogy with the gravitationalN -body
potential problems occurring in computational physics. In general we need to evalu-
ate (1) at M points {yj ∈ Rd, j = 1, . . . ,M} leading to the quadratic O(MN) cost.
The sum can be thought of as a matrix-vector product f = Kq, where K is a M×N
matrix the entries of which are of the form [K]ij = k(yj , xi) and q = [q1, . . . , qN ]T

is a N × 1 column vector. I developed fast ϵ-exact algorithms that compute the
sum approximately in linear O(M+N) time. The algorithm is ϵ-exact, i.e., for any

given ϵ > 0, f̂ is an ϵ− exact approximation to f if maxyj

[
|f̂(yj)− f(yj)|/Q

]
≤ ϵ

where Q =
∑N

i=1 |qi|. The constant in O(M + N), depends on the desired ac-
curacy ϵ, which however can be arbitrary. The fast algorithm is based on series
expansion of the kernel and retaining only the first few terms contributing to the
desired accuracy. The algorithms are in the spirit of fast multipole methods used in
computational physics 4.
My thesis consists of two core contributions–(1) design of fast summation algo-

rithms and (2) applying these fast primitives to certain large scale machine learning
problems. Table I summarizes the three key fast summation algorithms that I de-
veloped during my doctoral thesis and the corresponding applications. Below are
some of the key papers in this stream of research.

3.1 Fast computation of kernel estimators

8. Fast Computation of Kernel Estimators Vikas C. Raykar, Ramani Duraiswami, and
Linda H. Zhao, Journal of Computational and Graphical Statistics., Vol. 19, No. 1,
pp. 205–220, March 2010.

9. Fast optimal bandwidth selection for kernel density estimation Vikas C. Raykar and
Ramani Duraiswami, Proceedings of the sixth SIAM International Conference on

Data Mining, pp. 524–528, Bethesda, April 2006.

The computational complexity of evaluating the kernel density estimate (or its

3Gray, A. and Moore, A. 2001. N-body problems in statistical learning. In Advances in Neural

Information Processing Systems. 521–527.
4Greengard, L. 1994. Fast algorithms for classical physics. Science 265, 5174, 909–914.

http://pubs.amstat.org/doi/abs/10.1198/jcgs.2010.09046
http://www.umiacs.umd.edu/~vikas/publications/raykar_SDM_2006.pdf
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Core MVP primitive and applications

Gaussian

G(yj) =
∑N

i=1 qie
−∥yj−xi∥2/h2

kernel density estimation, Gaussian process regression, implicit surface fitting

Hermite × Gaussian

G(yj) =
∑N

i=1 qiHr

(
yj−xi

h1

)
e−(yj−xi)

2/h2
2

kernel density derivative estimation, optimal bandwidth estimation, projection pursuit

error function

G(yj) =
∑N

i=1 qi erfc(yj − xi)
ranking, collaborative filtering

Table I. The fast summation algorithms designed and tasks to which they were applied.

derivatives) at M evaluation points given N sample points scales quadratically as
O(NM)—making it prohibitively expensive for large datasets. While approximate
methods like binning have been used speed up the computation, they lack a precise
control over the accuracy of the approximation. There is no straightforward way
of choosing the binning parameters a priori in order to achieve a desired approx-
imation error. I proposed a novel computationally efficient ϵ-exact approximation
algorithm for the univariate Gaussian kernel-based density derivative estimation
that reduces the computational complexity from O(NM) to linear O(N+M). The
user can specify a desired accuracy ϵ. The algorithm guarantees that the actual
error between the approximation and the original kernel estimate will always be
less than ϵ. I also applied the proposed fast algorithm to speed up automatic band-
width selection procedures. I compared the method to the best available binning
methods in terms of the speed and the accuracy. Experimental results show that
the proposed method is almost twice as fast as the best binning methods and is
around five orders of magnitude more accurate. For example, at N = 106 sample
points the direct computation takes 379.27 sec while the proposed method takes
only 0.92 sec (a speedup of 412). I also demonstrated that the proposed procedure
can be extremely useful for speeding up exploratory projection pursuit techniques.

3.2 Large scale preference learning/ranking

10. A fast algorithm for learning a ranking function from large scale data sets Vikas

C. Raykar, Ramani Duraiswami, and Balaji Krishnapuram, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 30, No. 7, pp. 1158–1170, July 2008.

11. A fast algorithm for learning large scale preference relations Vikas C. Raykar, Ra-
mani Duraiswami, and Balaji Krishnapuram, Proceedings of the 11th International
Conference on Artificial Intelligence and Statistics (AISTATS), pp. 385-392, Peurto

Rico, March 2007.

The problem of ranking has recently received significant attention in the statistical
machine learning and information retrieval communities. In a typical ranking for-
mulation, we compare two instances and determine which one is better or preferred.
Based on this, a set of instances can be ranked according to a desired preference
relation. The study of ranking has largely been motivated by applications in search
engines, information retrieval, collaborative filtering, and recommender systems.

http://www.umiacs.umd.edu/~vikas/publications/RDK_fast_ranking_IEEE_PAMI_2008.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v2/raykar07a/raykar07a.pdf
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Most of the previous published ranking algorithms suffered for the quadratic com-
putational complexity. In this work I consider the problem of learning the ranking
function that maximizes a generalization of the Wilcoxon-Mann-Whitney statistic
on the training data. Relying on an ϵ-exact approximation for the error-function,
I reduced the computational complexity of each iteration of a conjugate gradient
algorithm for learning ranking functions from O(m2) to O(m). Experiments on
public benchmarks for ordinal regression and collaborative filtering indicate that
the proposed algorithm is as accurate as the best available methods in terms of
ranking accuracy, when the algorithms are trained on the same data. However,
since it is several orders of magnitude faster than the current state-of-the-art ap-
proaches, it is able to leverage much larger training datasets containing tens to
hundreds of thousands of samples.

3.3 Fast computation of sums of Gaussians

12. Fast computation of sums of Gaussians in high dimensions Vikas C. Raykar, C. Yang,
R. Duraiswami, and N. Gumerov, CS-TR-4767, Department of computer science,
University of Maryland, Collegepark.

13. The Improved Fast Gauss Transform with applications to machine learning Vikas C.
Raykar and Ramani Duraiswami, Book chapter in Large-Scale Kernel Machines, pp.

175–201, MIT Press 2007.

14. Automatic online tuning for fast Gaussian summation Vlad I. Morariu, Balaji V.
Srinivasan, Vikas C. Raykar, Ramani Duraiswami, and Larry Davis, Advances in
Neural Information Processing Systems (NIPS), vol. 21, pp. 1113–1120, 2009.

The most commonly used kernel function in various machine learning algorithms
is the Gaussian kernel e−∥x−y∥2/h2

, where h is called the bandwidth of the kernel.
The fast Gauss transform 5 is a well known ϵ-exact approximation algorithm that
reduces the computational complexity of the evaluation of the sum of N Gaussians
at M points in d dimensions from O(MN) to O(M +N). However, the constant
factor in O(M + N) grows exponentially with increasing dimensionality d, which
makes the algorithm impractical for dimensions greater than three. I presented a
new algorithm where the constant factor is reduced to asymptotically polynomial
order. The reduction is based on a new multivariate Taylor series expansion scheme
combined with the efficient space subdivision using the k-center algorithm. This al-
gorithm gives good speedups in dimensions as high as tens for moderate bandwidths
and as high as hundreds for large and small bandwidths.
The proposed algorithm suffered from two problems: the Taylor series expansion

does not perform well for very low bandwidths, and parameter selection was not
trivial and can drastically affect performance and ease of use. Recently I have been
collaborating with my advisor on integrating the algorithm with approximate near-
est neighbor searching. This resulted in the development of the FIGTree algorithm
(published at NIPS 2009) which can now be essentially used as a black box. The

5Greengard, L. and Strain, J. 1991. The fast Gauss transform. SIAM Journal of Scientic and
Statistical Computing 12, 1, 79–94.

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080039233_2008037469.pdf
http://www.umiacs.umd.edu/~vikas/publications/raykar_LKSM_2006.pdf
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11268&mode=toc
http://books.nips.cc/papers/files/nips21/NIPS2008_0257.pdf
http://www.umiacs.umd.edu/~morariu/figtree/
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algorithm combines four different methods and automatically predicts the fastest
method and tunes its parameters for the given dataset.
In the future I would like to work on the development of these kind of fast approx-

imate algorithms for more kernels–e.g., the Epanechnikov kernel for kernel density
estimation and the Matèrn class of kernels used in Gaussian process regression and
spatial analysis. In many applications these fast MVP primitives are embedded
in a optimization routine. A theoretical issue which I have barely touched upon
concerns the convergence of these optimization routines when using approximate
MVP primitives. For most machine learning tasks even though the data is very
high dimensional, the true intrinsic dimensionality is typically very small. I intend
to explore if dimensionality reduction approaches like PCA and manifold learning
methods can be directly incorporated into our fast algorithms. A more ambitious
task would be to explore if there are any deeper connections between structure in
the data, computation, and inference.

4. PREDOCTORAL RESEARCH: AUDIO SIGNAL PROCESSING

15. Extracting the frequencies of the pinna spectral notches in measured head related
impulse responses Vikas C. Raykar, Ramani Duraiswami, and B. Yegnanarayana,
The Journal of the Acoustical Society of America, Vol. 118, No. 1, pp. 364–374,

July 2005.

16. Position Calibration of Microphones and Loudspeakers in Distributed Computing
Platforms Vikas C. Raykar, Igor Kozintsev, and Rainer Lienhart, IEEE Transactions
on Speech and Audio Processing, Vol. 13, No. 1, pp. 70–83, Jan. 2005.

I did my masters in electrical engineering with a specialization in audio signal pro-
cessing. Here are a couple of representative publications. The first paper explored
how the shape of the external ear (pinna) helps in the localization of the sound
source. The second paper describes an algorithm which can localize a bunch of
laptops placed in a conference room based on audio signals.
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