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CHALLENGES:
- SEAMLESS CONNECTIVITY
- MULTI-MEDIA (FIBER,SATCOM,WIRELESS)
- HETEROGENEOUS PROTOCOLS
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IP-over-WDM

• Networks use many layers
– Inefficient, expensive

• Goal:  reduced protocol stack
– Eliminate electronic layers
– Preserve functionality

• Joint design of electronic and
optical layers

– Medium access protocol
– Topology reconfiguration
– Efficient multiplexing (grooming)
– Joint electronic/optical protection

IP

ATM

SONET

WDM

Applications

TCP

WDM-aware
IP

Applications

TCP

WDMIP router

WDM
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Outline

• Survivable routing of logical topologies:  How to embed the
logical topology on a physical topology so that the logical
topology can withstand physical link failures

• Physical topology design:  How to design the physical topology
so that it can be used to embed rings in a survivable manner

• Path protection with failure localization:  What are the benefits of
failure localization for path protection
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Physical Topology vs Logical Topology

• Physical Topology
– Optical layer topology
– Optical nodes (switches) connected by fiber links

• Logical Topology
– Electronic layer topology; e.g., routers connected by lightpaths

 Lightpaths must be routed on the physical topology
 Lightpaths are established by tuning transceivers and switches

Physical topology

Logical topology
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Routing the logical topology
on a physical topology

• How do we route the logical topology on the physical topology so
that we can keep the logical topology protected ?

– Logical connections are lightpaths that can be routed in many ways
on the physical topology

– Some lightpaths may share a physical link in which case the failure of
that physical link would cause the failure of multiple logical links

 For rings (e.g., SONET) this would leave the network disconnected
– Need to embed the logical topology onto the physical topology to

maintain the protection capability of the logical topology
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Application

• Protection provided at the electronic layer
– E.g., SONET, ATM, IP

– Physical layer protection is redundant

• However, must make sure that the protection provided at the
electronic layer is maintained in the event of a physical link cut

• Simple solution:  Route all logical (electronic) links on disjoint
physical routes

– E.g., physical and electronic topologies look the same

– Approach may be wasteful of resources

– Disjoint paths may not be available
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Alternative approach

• Route the lightpaths that constitute the electronic topology in
such a way that the protection capability is maintained

• Examples:
– Make sure logical topology remains connected in the event of a

physical link failure

– For SONET rings, make sure alternative route exists in the event of a
physical link failure (same as topology remains connected)

• Our focus:  Route the lightpaths of the logical topology so that it
remains connected in the event of any single physical link failure

Eytan Modiano and Aradhana Narula-Tam, "Survivable lightpath routing: A new approach to the 
design of WDM-based networks," IEEE Journal of Selected Areas in Communication, May 2002. 
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Cut-set formulation

• Consider a graph (N, E)
– A cut  is a partition of the set of nodes N into subsets S and N-S
– The cut-set CS(S,N-S) is the set of edges in the graph that connect a

node in N to a node in N-S
– The size of the cut-set is the number of edges in the cut-set

Menger’s Theorem:  A logical topology is 2-connected if for every cut (S,S-N)

| CS(S,N-S)|  ≥ 2

1

2 3

45

S = {1,5}, N-S = {2,3,4}

CS(S,N-S) = {(1,2), (5,2),(5,3),(5,4)}
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Condition for survivable routing

Theorem 1:  A routing is survivable if and only if for every cut-set
CS(S,NL-S) of the logical topology the following holds:

Let E(s,t) be the set of physical links used by logical link (s,t). Then,
for every cut-set CS(S,NL-S),

• The above condition requires that no single physical link is shared
by all logical links belonging to a cut-set of the logical topology

– not all of the logical links belonging to a cut-set can be routed on the
same physical link

• This condition must hold for all cut-sets of the logical topology

  
I E(s,t) = ∅
(s,t )∈CS(S,NL −S )
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ILP formulation of survivable routing problem

Minimize fij
st

( i, j )∈E
(s, t )∈EL

∑   Subject to:

A) Connectivity constraints:      fij
st

j s. t. (i , j )∈E
∑ − f ji

st

j s. t. ( j ,i )∈E
∑ =

1 if s = i
−1 if t= i
0 otherwise

 

 
 

 
 

B)  Survivability constraints:      
∀(i, j)∈E
∀S ⊂ NL

, fij
st +

(s , t)∈CS (S, NL −S )
∑ fji

st < CS(S,NL − S)

C) Capacity constraints:         ∀(i, j)∈E, fij
st

( s, t)∈EL
∑ ≤W

D)  Integer flow constraints:      fij
st ∈ 0,1{ }
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Solving the ILP

• Difficult for large networks due to the large number of constraints
– Exponential number of cut-set constraints

• Solution for ILP can be found using branch and bound and other
heuristic techniques

• Alternatively relaxations of the ILP can be found that remove
some of the constraints

– LP relaxation removes the integer constraints, but unfortunately
solution becomes non-integer => can’t determine the routings

– Can relax some of the less critical survivability constraints
 Start with only a subset of the cut-set constraints, if survivable solution is

found then done; otherwise add more cut-set constraints until survivable
solution is found
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ILP relaxations

• Single node cuts relaxation:  Consider only those cuts that
separate a single node from the rest of the network

– Only N such cut-sets
– Single node cuts are often the smallest and hence the most

vulnerable
– When network is densely connected most cuts contain many

links and are not as vulnerable

• Small cut-sets relaxation: Consider only those cut-sets
whose size is less than a certain size (e.g., the degree of the
network, degree + 1, etc.)

– This relaxation includes all the single node cuts, but some
other small cuts as well

– Appropriate for less densely connected networks
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NSF Network experiments

• Logical topologies
– Randomly generated logical topologies of degrees 3, 4, 5

 100 randomly generated topologies of each size

• Physical topology
– NSF NET (14 nodes, 21 links)
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Results: Degree 3 logical topologies

Logical

Top's

Unprotected

solution

Ave.

links

Ave.

λ∗links

ILP 100 0 19.76 46.07

Short Path 100 86 19.31 45.25

Relax - 1 100 10 19.78 46.03

Relax - 2 100 0 19.78 46.07
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Results:  Degree 4 logical topologies

Logical

Top's

Unprotected

solution

Ave.

links

Ave.

λ*links

ILP 100 0 20.30 60.64

Short Path 100 38 20.17 60.47

Relax - 1 100 0 20.30 60.64

Relax - 2 100 0 20.30 60.64
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Results:  Degree 5 logical topologies

Logical

Top's

Unprotected

solution

Ave.

links

Ave.

λ*links

ILP 100 0 20.56 75.40

Short Path 100 27 20.48 75.31

Relax - 1 100 0 20.56 75.40

Relax - 2 100 0 20.56 75.40
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Run times of algorithms

ILP Relaxation - 1 Relaxation - 2
Degree - 3 8.3 s 1.3 s 1.3 s
Degree - 4 2 min. 53 sec. 1.5 s 1.5 s
Degree - 5 19 min. 17 sec. 2.0 s 2.0 s

Sun Sparc Ultra 10 computer
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∀(i, j)∈L, fij
st

(s,t )∈EL

∑ + fji
st

(s,t )∈EL

∑ ≤1

Ring Logical topologies

• Widely used topology (e.g., SONET rings)

• Ring topology yields simple solutions
– It can be easily shown that every cut of a  bi-directional ring

contains exactly two links
– It can also be shown that every pair of links shares a cut

• Corollary:  A bi-directional logical ring is survivable if and
only if no two logical links share the same physical link

– The proof is a direct result of Theorem 1
– Cut-set constraints can be replaced by a simple capacity

constraint on the links
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NP-completeness

Theorem 2:  The survivable routing problem is NP-complete

Proof:  Mapping of ring survivable routing to k edge disjoint
paths in undirected graphs

s1

s2

s*

t1

t2

t*

Two-edge disjoint paths Four-edge disjoint paths
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Ring experiments

• Physical topologies:

• Logical topologies:
– All possible 6 node logical rings (120 possible) on 6 node

physical
– All possible 6,7,8,9, and 10 node rings on 10 node physical

6 nodes 10 nodes
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Routing Algorithms

• Survivable routing - ILP solution
– Guarantees survivable routing whenever one exists

• Shortest path routing
– Find the shortest path for every lightpath regardless of

survivability

• Greedy routing
– Route lightpaths sequentially using shortest path
– Whenever a physical link is used by a lightpath, it is

removed so that it cannot be used by any other lightpath
 Takes advantage of the fact that for ring logical topologies

no two lightpaths can share a physical link
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Ring results
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Ring results, cont.

Logical

Top's

No protected

solution

Ave.

links

Ave.

λ*links

6 node-ILP 120 0 7.4 7.4

6 node - SP 120 64  (53%) 6.4 7.2

6 node - GR 120 0 8.1 8.1

10 node-ILP 362880 33760 (9%) 17.8 17.8

10 node - SP 362880 358952 (99%) 11.8 15.5

10 node - GR 362880 221312 (61%) 18.4 N/A
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Outline

• Survivable routing of logical topologies

• Physical topology design

• Path Protection with failure localization
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Physical Topology Design:
Embedding Survivable Rings

• N node Network:  Embed all permutations of rings of size K<= N
– There are          rings of size K

• Typical physical topologies are not conducive to embedding rings in survivable
manner

• Goal: Design physical topologies that can support survivable logical rings
– Use minimum number of physical links

A. Narula-Tam, E. Modiano, A. Brzezinski,  "Physical Topology Design for Survivable Routing
of Logical Rings in WDM-Based Networks," IEEE JSAC, October, 2004.

 

• 11 Node NJ LATA
• Supports only 56% of all 9 node rings

)!( 1−

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Necessary conditions for physical topology

• Under what condition can one embed any ring logical topology on
a given physical topology

– Want to design a physical topology that can support all possible ring
logical topologies

 Service provider that receive requests for ring topologies and wants to
make sure that he can support all requests in a survivable manner

Theorem 3: In order for a physical topology to support any possible
ring logical topology, any cut of the physical topology (S, N-S),

CSP(S, N − S) ≥2min( S , N − S )
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Necessary conditions for physical topology

• Theorem 3 provides insights on physical topology design
– E.g., all neighbors of degree 2 nodes must have degree ≥  4

• Theorem 4:  The number of links that an N node physical topology
must have in order to guarantee survivable routing of K node
logical rings is given by:

• Proof:  by repeated application of Theorem 3

Logical Ring
Size

Physical link
requirement

€ 

K = 4

€ 

4N 3

€ 

K = 6

€ 

3N 2

€ 

K = 8

€ 

1.6N

€ 

K = N − 1

€ 

2N − 3
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Proof:  K=4 case

Lemma: Any node of degree 2 must have physical links to nodes of
degree 4 or higher.

Proof:  Suppose a node of degree 2 has a physical link to a node of
degree 3, then the cut-set consisting of the degree 2 node and its degree
3 neighbor contains only 3 links.  However, since the cut-set contains
two nodes, Theorem 3 requires a minimum of 4 cut-set links.

Degree 2 node

Degree 3 node

Cut-set of size 3
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Proof of Theorem 4 (K = 4 case)

Let 

€ 

di  be the number of nodes with degree 

€ 

i in the physical
topology. Then the number of links in the physical topology is

€ 

L =
idi
2

i=2

N−1
∑ = d2 +

3d3
2

+
idi
2

i=4

N−1
∑

€ 

d2 ≤
i
2

i=4

N−1
∑ di

€ 

L ≥ 2d2 +
3
2
d3From lemma 1:

€ 

L ≥
2d2 + 3d3 + 4(N − d2 − d3)

2
= 2N − d2 −

d3
2

Also, since nodes of degree i, add a minimum of i/2 physical links we get:

(1)

(2)

€ 

L ≥ max(2d2 +
3
2
d3,2N − d2 −

d3
2
)(1) & (2) =>
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Proof, cont.

€ 

L ≥ max(2d 2 +
3
2
d3,2N − d2 −

d3
2
)

€ 

2d2 +
3
2
d3 = 2N − d2 −

d3
2

€ 

d2 =
2N − 2d3

3

€ 

L ≥
4N
3

+
d3
6
≥
4N
3

Minimum occurs when

Similar arguments for proving the K=6 and K=8 cases

 K= N-2 case:  Show that we can find an N-2 node logical topology that
requires at least 2(N-2) links
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Integer Linear Program (ILP)
Problem Formulation

• Embed batch of R random rings of size K

• Start with a fully connected physical topology with cost of each physical
link = 1

– Minimize number of physical links used to embed all R rings

• ILP results
– Solvable for small instances

– Yields insights on properties of appropriate physical topologies

 E.g., solutions tend to have a “multi-hub” architecture

 

N=10

R=20

K=6
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Physical Topologies for Embedding Logical
Rings

• Dual hub architecture

• N nodes, 2(N-2) bi-directional links
• Supports all logical rings of size ≤ N-2
• Uses minimal number of physical links

• With additional link can support all logical rings of size ≤ N-1
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Physical Topology for Embedding
Rings of Size N

• Embedding rings of size N is considerably more difficult
• Three hub architecture
• Requires 3N–6 physical links
• Recall, rings of size N-1 required 2N-3 physical links
• Can we do better?
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Outline

• Survivable routing of logical topologies

• Physical topology design

• Path Protection with failure localization
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Path Protection and Link Protection

Protection Schemes PP     LP 

Major Feature Link-Disjoint Localization

Resource Efficiency High  Low
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Path Protection with Failure Localization (PPFL)

• System specifies an end-to-end backup path to each link along the primary
path

Link on Primary Path ( 1-2-3-5-4) Corresponding Protection Path 

(1,2) 1-6-2-3-5-4
(2,3) 1-2-5-4
(3,5) 1-2-5-4
(5,4) 1-2-3-4
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Protection Sharing

PPFL offers greater opportunity for resource sharing
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Traffic Model

• Batch call arrival
– Typical of a static routing and wavelength assignment problem
– Usually done for the purpose of logical topology design
– Requires solving for primary and backup paths for all sessions

simultaneously

• Dynamic (random) call arrivals
– Call-by-call model

 Poisson call arrivals
 Exponential holding times

– Resources are allocated on a call by call basis, depending on
network state information

Our focus:  Dynamic call-by-call model
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Question:  Does system achieve optimal resource
utilization if each call is served using the minimum
resources?

Implementation:  Greedy and Heuristic
Approach

• Greedy approach: Solving MILP problems
– Guarantee minimum resource used by each call
– Computationally complex

• Heuristic approach: Seeking the shortest paths
– Not  guaranteed to use the minimum resources to serve a call
– Computationally simple (e.g. Dijkstra's algorithm)
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MILP Formulation for PPFL
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Example:  Greedy vs. Shortest Path heuristic

 SD  Primary Protection Path   Total Number of
 Pair Path (protected link) Occupied Wavelengths 

(1,4) 1-2-3-4 1-6-5-4 (1-2-3-4) 6   (no sharing)

(6,3) 6-5-3 6-2-3 (6-5-3) 10  (no sharing)

(3,5) 3-5 3-2-5 (3-5) 13  (no sharing)

1-6-2-3-4 (1-2)

(1,4) 1-2-3-4 1-2-5-4 (2-3) 7 (share (2-3-4))

1-2-5-4 (3-4)

6-2-3 (6-5)

6-2-3 (5-3)

Greedy 
Approach

 10 (share (6,2))  (6,3) 6-5-3
Heuristic 
Approach 

(3,5) 3-5 3-2-5 (3-5) 12 (share (2,5))

Shortest path heuristic may provide greater
opportunity for future sharing of backup paths
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Simulation:  The 11 node, 21 link
New Jersey Lata Network
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Simulation Results
 Blocking Probability vs. Traffic Load
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Simulation: The 14 node, 21 link NSFNET Network
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Simulation Results
 Blocking Probability vs. Traffic Load
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Discussion of results

• In the dynamic call-by-call case a greedy solution that finds the
optimal routes at any point in time fails to take into account future
calls

• In order to account for future call arrivals, the problem can be modeled
as a Markov Decision Problem (e.g., dynamic programming)

– Solution can be very complex

• Intuitive explanation:
– The greedy solution treats primary and backup resources with equal

importance and attempts to minimize their overall use
– However, primary path resources cannot be shared whereas backup can

 Better to minimize primary resources than backup resources
– The shortest path approach puts a greater priority on minimizing the

primary path resources
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Discussion of  path protection with failure
localization (PPFL)

• The PPFL  scheme is more flexible than the path protection
scheme

– Path protection and link protection can be viewed as “solutions” to
the PPFL  scheme

– Hence PPFL results in better resource utilization

• PPFL uses local failure information for finding protection paths
– This added information requires more sophisticated network

management

• The call-by-call model leads to dynamic resource allocation
scheme that cannot be solved using a traditional ILP approach

– Markov Decision formulation - too complex
– Simple heuristics - e.g., shortest path
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Summary

• Cross-Layer optimization is critical to the design of protection
algorithms for WDM based networks

– Survivable routing of logical topologies:  How do we embed the logical
topology on a physical topology so that the logical topology can
withstand physical link failures

– Physical topology design:  How do we design physical topology so
that they can be used to embed rings in a survivable manner

– Path protection with failure localization:  What are the benefits of
failure localization for efficient path protection?


