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Sensor Network ModelSensor Network Model

Large set of sensors distributed in a sensor field.Large set of sensors distributed in a sensor field.
Communication via a wireless adCommunication via a wireless ad--hoc network.hoc network.
Node and links are failureNode and links are failure--prone. prone. 
Sensors are resourceSensors are resource--constrainedconstrained
–– Limited memory, batteryLimited memory, battery--powered, messaging is costly.powered, messaging is costly.



Sensor DatabasesSensor Databases

Useful abstraction:Useful abstraction:
–– Treat sensor field as a distributed databaseTreat sensor field as a distributed database

But: data is gathered, not stored nor saved.But: data is gathered, not stored nor saved.

–– Express query in SQLExpress query in SQL--like languagelike language
COUNT, SUM, AVG, MIN, GROUPCOUNT, SUM, AVG, MIN, GROUP--BYBY

–– Query processor distributes query and Query processor distributes query and 
aggregates responsesaggregates responses

–– Exemplified by systems like TAG (Berkeley/MIT) Exemplified by systems like TAG (Berkeley/MIT) 
and Cougar (Cornell)and Cougar (Cornell)
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A Motivating ExampleA Motivating Example

Each sensor has a Each sensor has a 
single sensed value.single sensed value.
Sink initiates Sink initiates oneone--shotshot
queries such as:   queries such as:   
What is the…What is the…
–– maximum value?maximum value?
–– mean value?mean value?

ContinuousContinuous queries are queries are 
a natural extension.a natural extension.
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MAX Aggregation (no losses)MAX Aggregation (no losses)

Build spanning treeBuild spanning tree
Aggregate inAggregate in--networknetwork
–– Each node sends one Each node sends one 

summary packetsummary packet
–– Summary has MAX of Summary has MAX of 

entire subentire sub--treetree

One loss could lose One loss could lose 
MAX of many nodesMAX of many nodes
–– Neighbors of sink are Neighbors of sink are 

particularly vulnerableparticularly vulnerable
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MAX Aggregation (with loss)MAX Aggregation (with loss)

Nodes send summaries Nodes send summaries 
over over multiple pathsmultiple paths
–– Free local broadcastFree local broadcast
–– Always send MAX value Always send MAX value 

observedobserved

MAX is “infectious”MAX is “infectious”
–– Harder to loseHarder to lose
–– Just need one viable Just need one viable 

path to the sinkpath to the sink

Relies on Relies on duplicateduplicate--
insensitivityinsensitivity of MAXof MAX
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AVG Aggregation (no losses)AVG Aggregation (no losses)

Build spanning treeBuild spanning tree
Aggregate inAggregate in--networknetwork
–– Each node sends one Each node sends one 

summary packetsummary packet
–– Summary has SUM and Summary has SUM and 

COUNT of subCOUNT of sub--treetree

Same reliability Same reliability 
problem as beforeproblem as before
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AVG Aggregation (naive)AVG Aggregation (naive)

What if redundant What if redundant 
copies of data are copies of data are 
sent?sent?
AVG is AVG is duplicateduplicate--
sensitivesensitive
–– Duplicating data Duplicating data 

changes aggregatechanges aggregate
–– Increases weight of Increases weight of 

duplicated dataduplicated data
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AVG Aggregation (TAG++)AVG Aggregation (TAG++)

Can compensate for Can compensate for 
increased weight increased weight 
[MFHH’02][MFHH’02]
–– Send halved SUM and Send halved SUM and 

COUNT insteadCOUNT instead

Does not change Does not change 
expectation!expectation!
Only reduces varianceOnly reduces variance
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AVG Aggregation (LIST)AVG Aggregation (LIST)

Can handle duplicates Can handle duplicates 
exactly with a list of exactly with a list of 
<id, value> pairs<id, value> pairs
Transmitting this list is Transmitting this list is 
expensive!expensive!
Lower bound: linear space Lower bound: linear space 
is necessary is necessary if we demand if we demand 
exact results.exact results.
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Classification of AggregatesClassification of Aggregates

TAG classifies aggregates according toTAG classifies aggregates according to
–– Size of partial stateSize of partial state
–– MonotonicityMonotonicity
–– ExemplaryExemplary vsvs. summary. summary
–– DuplicateDuplicate--sensitivitysensitivity

MIN/MAX   (cheap and easy)MIN/MAX   (cheap and easy)
–– Small state, monotone, exemplary, duplicateSmall state, monotone, exemplary, duplicate--insensitiveinsensitive

COUNT/SUM/AVG  (considerably harder)COUNT/SUM/AVG  (considerably harder)
–– Small state and monotone, BUT duplicateSmall state and monotone, BUT duplicate--sensitivesensitive
–– Cheap if aggregating over tree without lossesCheap if aggregating over tree without losses
–– Expensive with multiple paths and lossesExpensive with multiple paths and losses



Design Objectives for RobustDesign Objectives for Robust
AggregationAggregation

Admit inAdmit in--network aggregation of partial values.network aggregation of partial values.
Let representation of aggregates be both Let representation of aggregates be both orderorder--
insensitiveinsensitive and and duplicateduplicate--insensitiveinsensitive..
Be agnostic to routing protocolBe agnostic to routing protocol
–– Trust routing protocol to be bestTrust routing protocol to be best--effort.effort.
–– Routing and aggregation can be logically decoupled [NG ’03].Routing and aggregation can be logically decoupled [NG ’03].

–– Some routing algorithms better than others (Some routing algorithms better than others (multipathmultipath))..
Exact answers incur extremely high cost.Exact answers incur extremely high cost.
–– We argue that it is reasonable to use aggregation methods We argue that it is reasonable to use aggregation methods 

that are themselves approximatethat are themselves approximate..



OutlineOutline

IntroductionIntroduction
Sketch Theory and PracticeSketch Theory and Practice
–– COUNT sketches (old)COUNT sketches (old)
–– SUM sketches (new)SUM sketches (new)
–– Practical realizations for sensor Practical realizations for sensor netsnets

ExperimentsExperiments
ConclusionsConclusions



COUNT SketchesCOUNT Sketches

Problem: Estimate the number of distinct item IDs Problem: Estimate the number of distinct item IDs 
in a data set with only one pass.in a data set with only one pass.
Constraints: Constraints: 
–– Small space relative to stream size.Small space relative to stream size.
–– Small per item processing overhead.Small per item processing overhead.
–– Union operator on sketch results.Union operator on sketch results.

Exact COUNT is impossible without linear space.Exact COUNT is impossible without linear space.
First approximate COUNT sketch in [FM’85].First approximate COUNT sketch in [FM’85].
–– O(log N) space, O(1) processing time per item.O(log N) space, O(1) processing time per item.



Counting PaintballsCounting Paintballs

Imagine the following Imagine the following 
scenario:scenario:
–– A bag of A bag of nn paintballs is paintballs is 

emptied at the top of a emptied at the top of a 
long stairlong stair--case.case.

–– At each step, each At each step, each 
paintball either bursts paintball either bursts 
and marks the step, or and marks the step, or 
bounces to the next bounces to the next 
step. 50/50 chance step. 50/50 chance 
either way.either way.

Looking only at the pattern of 
marked steps, what was n?



Counting Paintballs (cont)Counting Paintballs (cont)

What does the What does the 
distribution of paintball distribution of paintball 
bursts look like?bursts look like?
–– The number of bursts at The number of bursts at 

each step follows a each step follows a 
binomial distribution.binomial distribution.

–– The expected number of The expected number of 
bursts drops bursts drops 
geometrically.geometrically.

–– Few bursts after Few bursts after loglog22 nn
stepssteps

1st

2nd

S th

B(n,1/2)

B(n,1/2 S)

B(n,1/4)

B(n,1/2 S)



Counting Paintballs (cont)Counting Paintballs (cont)

Many different estimator ideas Many different estimator ideas 
[FM'85,AMS'96,GGR'03,DF'03,...][FM'85,AMS'96,GGR'03,DF'03,...]
Example: Let Example: Let pospos denote the position of the denote the position of the 
highest unmarked stair,highest unmarked stair,

E(pos) ≈ logE(pos) ≈ log22(0.775351 n)(0.775351 n)
σσ22(pos) ≈ 1.12127(pos) ≈ 1.12127

Standard variance reduction methods applyStandard variance reduction methods apply
Either O(log n) or O(log log n) spaceEither O(log n) or O(log log n) space



Back to COUNT SketchesBack to COUNT Sketches

The COUNT sketches of The COUNT sketches of 
[FM'85] are equivalent to [FM'85] are equivalent to 
the paintball process.the paintball process.
–– Start with a bitStart with a bit--vector of all vector of all 

zeros.zeros.
–– For each item, For each item, 

Use its ID and a hash Use its ID and a hash 
function for coin flips.function for coin flips.
Pick a bitPick a bit--vector entry.vector entry.
Set that bit to one.Set that bit to one.

These sketches are These sketches are 
duplicateduplicate--insensitiveinsensitive::

1 0 0 0 0{x}

0 0 1 0 0{y}

1 0 1 0 0{x,y}

∀∀A,B  (Sketch(A) A,B  (Sketch(A) ⌡⌡ Sketch(B)) = Sketch(A Sketch(B)) = Sketch(A ∪∪ B)B)



Application to Application to SensornetsSensornets

Each sensor computes Each sensor computes kk independent sketches of itself independent sketches of itself 
using its unique sensor ID.using its unique sensor ID.
–– Coming next: sensor computes sketches of its Coming next: sensor computes sketches of its valuevalue..

Use a robust routing algorithm to route sketches up to Use a robust routing algorithm to route sketches up to 
the sink.the sink.
Aggregate the Aggregate the kk sketches via insketches via in--network XOR.network XOR.
–– Union via XOR is Union via XOR is duplicateduplicate--insensitiveinsensitive..

The sink then estimates the count.The sink then estimates the count.

Similar to Similar to gossipgossip and and epidemicepidemic protocols.protocols.



SUM SketchesSUM Sketches

Problem: Estimate the sum of values of Problem: Estimate the sum of values of 
distinct <distinct <key, value> pairs in a data stream > pairs in a data stream 
with repetitions. (with repetitions. (value ≥ 0, integral).≥ 0, integral).

Obvious start: Emulate Obvious start: Emulate value insertions into a insertions into a 
COUNT sketch and use the same COUNT sketch and use the same estimatorsestimators..

– For <k,v>, imagine inserting

<k, v, 1>, <k, v, 2>, …, <k, v, v>



SUM Sketches (cont)SUM Sketches (cont)

But what if the value is 1,000,000?But what if the value is 1,000,000?

Main Idea (details on next slide):  Main Idea (details on next slide):  
–– Recall that all of the lowRecall that all of the low--order bits will be set to order bits will be set to 

1 w.h.p. inserting such a value.1 w.h.p. inserting such a value.
–– Just set these bits to one immediately.Just set these bits to one immediately.
–– Then set the highThen set the high--order bits carefully.order bits carefully.



Simulating a set of Simulating a set of 
insertionsinsertions

Set all the lowSet all the low--order bits in  the “safe” region.order bits in  the “safe” region.
–– First First SS = log = log vv –– 2 log log 2 log log v v bits are set to 1 w.h.p.bits are set to 1 w.h.p.

Statistically estimate number of trials going beyond Statistically estimate number of trials going beyond 
“safe” region“safe” region
–– Probability of a trial doing so is simply 2Probability of a trial doing so is simply 2--SS

–– Number of trials Number of trials ~~ B B ((vv, 2, 2--SS).  [Mean = O(log).  [Mean = O(log22 vv)])]

For trials and bits outside “safe” region, set those bits For trials and bits outside “safe” region, set those bits 
manually.manually.
–– Running time is O(1) for each outlying trial.Running time is O(1) for each outlying trial.

Expected running time:                                        Expected running time:                                        
O(log O(log vv) + time to draw from ) + time to draw from B B ((vv, 2, 2--SS) + O(log) + O(log22 vv))



Sampling for Sensor Sampling for Sensor 
NetworksNetworks

We need to generate samples from We need to generate samples from B B ((n, pn, p).).
–– With a slow CPU, very little RAM, no floating point hardwareWith a slow CPU, very little RAM, no floating point hardware

General problem:  sampling from a discrete General problem:  sampling from a discrete pdfpdf..
Assume can draw uniformly at random from [0,1].Assume can draw uniformly at random from [0,1].
With an event space of size With an event space of size NN::
–– O(log O(log NN) lookups are immediate.) lookups are immediate.

Represent the Represent the cdf cdf in an array of size in an array of size NN..
Draw from [0, 1] and do binary search.Draw from [0, 1] and do binary search.

–– Cleverer methods for O(log log Cleverer methods for O(log log NN), O(log* ), O(log* NN) time) time

Amazingly, this can be done in constant time!



Walker’s Alias MethodWalker’s Alias Method

n 

1/
n

A – 0.10

B – 0.25

C – 0.05

D – 0.25
E – 0.35

n 

1/
n

A – 0.10 B – 0.15
C – 0.05

D – 0.25
E – 0.35B – 0.10

n 

1/
n

A – 0.10 B – 0.15
C – 0.05

D – 0.20

E – 0.35B – 0.10 D – 0.05

n 

1/
n

A – 0.10 B – 0.15
C – 0.05

D – 0.20 E – 0.20
B – 0.10 D – 0.05

E – 0.15

Theorem [Walker ’77]:  For any discrete Theorem [Walker ’77]:  For any discrete pdf pdf 
D over a sample space of size n, a table of D over a sample space of size n, a table of 
size size O(n)O(n) can be constructed in can be constructed in O(n)O(n) time time 
that enables random variables to be drawn that enables random variables to be drawn 
from D using at most two table lookups.from D using at most two table lookups.

n

1/n



Binomial Sampling for Binomial Sampling for 
SensorsSensors

Recall we want to sample from Recall we want to sample from BB(v,2(v,2--SS)) for for 
various values of various values of vv and and S.S.
–– First, reduce to sampling from First, reduce to sampling from GG(1 (1 –– 22--SS).).
–– Truncate distribution to make range finite                  Truncate distribution to make range finite                  

(recursion to handle large values).(recursion to handle large values).
–– Construct tables of size Construct tables of size 22SS for each for each SS of interest.of interest.
–– Can sample Can sample BB(v,2(v,2--SS)) in in O(v · 2O(v · 2--SS)) expected time.expected time.



The Bottom LineThe Bottom Line

–– SUM inserts inSUM inserts in
O(logO(log22(v))(v)) time with time with O(v / logO(v / log22(v))(v)) spacespace
O(log(v))O(log(v)) time with time with O(v / log(v))O(v / log(v)) spacespace
O(v)O(v) time with naïve methodtime with naïve method

–– Using Using O(logO(log22(v))(v)) method, 16 bit values (S ≤ 8) method, 16 bit values (S ≤ 8) 
and 64 bit probabilitiesand 64 bit probabilities

Resulting lookup tables are ~ 4.5KBResulting lookup tables are ~ 4.5KB
Recursive nature of Recursive nature of GG(1 (1 –– 22--SS)) lets us tune size furtherlets us tune size further

–– Can achieve Can achieve O(log v)O(log v) time at the cost of bigger time at the cost of bigger 
tablestables



OutlineOutline

IntroductionIntroduction
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ConclusionsConclusions



Experimental ResultsExperimental Results

Used TAG simulatorUsed TAG simulator
Grid topology with sink in Grid topology with sink in 
the middlethe middle
–– Grid sizeGrid size

[default: 30 by 30] [default: 30 by 30] 
–– Transmission radiusTransmission radius

[default: 8 neighbors on [default: 8 neighbors on 
the grid]the grid]

–– Node, packet, or link lossNode, packet, or link loss
[default: 5% link loss rate][default: 5% link loss rate]

–– Number of bit vectorsNumber of bit vectors
[default: 20 bit[default: 20 bit--vectors of vectors of 
16 bits (compressed)].16 bits (compressed)].



Experimental ResultsExperimental Results

We consider four main methods.We consider four main methods.
–– TAG1: transmit aggregates up a single spanning treeTAG1: transmit aggregates up a single spanning tree
–– TAG2:  Send a 1/TAG2:  Send a 1/kk fraction of the aggregated values to each fraction of the aggregated values to each 

of of kk parents.parents.
–– SKETCH:  broadcast an aggregated sketch to all neighbors SKETCH:  broadcast an aggregated sketch to all neighbors 

at level at level ii ––1 1 
–– LIST:  explicitly enumerate all <key, value> pairs and LIST:  explicitly enumerate all <key, value> pairs and 

broadcast to all neighbors at level broadcast to all neighbors at level ii –– 1.1.

LISTLIST vsvs. SKETCH measures the penalty associated . SKETCH measures the penalty associated 
with approximate values. with approximate values. 



COUNT COUNT vs vs Link Loss (grid)Link Loss (grid)



COUNT COUNT vs vs Link Loss (grid)Link Loss (grid)



SUM SUM vs vs Link Loss (grid)Link Loss (grid)



Message Cost ComparisonMessage Cost Comparison

24682468900900170424170424LISTLIST

246824689009001084310843SKETCHSKETCH

2468246890090018001800TAG2TAG2

90090090090018001800TAG1TAG1

Messages Messages 
ReceivedReceived

Messages SentMessages SentTotal Data Total Data 
BytesBytes

StrategyStrategy
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Our Work in ContextOur Work in Context

In parallel with our efforts,In parallel with our efforts,
–– Nath Nath and Gibbons (Intel/CMU)and Gibbons (Intel/CMU)

What are the essential properties of duplicate What are the essential properties of duplicate 
insensitivity?insensitivity?
What other aggregates can be sketched?What other aggregates can be sketched?

–– Bawa Bawa et al (Stanford)et al (Stanford)
What routing methods are necessary to guarantee the What routing methods are necessary to guarantee the 
validity and semantics of aggregates?validity and semantics of aggregates?



ConclusionsConclusions

DuplicateDuplicate--insensitive sketches fundamentally insensitive sketches fundamentally 
change how aggregation workschange how aggregation works
–– Routing becomes logically decoupledRouting becomes logically decoupled
–– Arbitrarily complex aggregation scenarios are Arbitrarily complex aggregation scenarios are 

allowable allowable –– cyclic topologies, multiple sinks, etc.cyclic topologies, multiple sinks, etc.

Extended list of nonExtended list of non--trivial aggregatestrivial aggregates
–– We added SUM, MEAN, VARIANCE, STDEV, …We added SUM, MEAN, VARIANCE, STDEV, …

Resulting system performs betterResulting system performs better
–– Moderate cost (Moderate cost (tunabletunable) for large reliability boost) for large reliability boost



Ongoing WorkOngoing Work

What else can we sketch?What else can we sketch?
–– Clear need to extend expressiveness of sketchesClear need to extend expressiveness of sketches
–– Also: what are the limits of duplicateAlso: what are the limits of duplicate--insensitive ones?insensitive ones?

Distributed streaming modelDistributed streaming model
–– Monitor and sketch streams of dataMonitor and sketch streams of data
–– Collect sketches and estimate global propertiesCollect sketches and estimate global properties

Traffic monitoringTraffic monitoring
–– Identifying large flows, flows with large changesIdentifying large flows, flows with large changes
–– Both already done with counting Bloom filters Both already done with counting Bloom filters 

[KSGC’03,CM’04][KSGC’03,CM’04]
We can make those duplicateWe can make those duplicate--insensitive!insensitive!

Aggregation via random samplingAggregation via random sampling



Future Directions (cont)Future Directions (cont)



Message Cost ComparisonMessage Cost Comparison

24682468900900170424170424LISTLIST

246824689009001084310843SKETCHSKETCH

2468246890090018001800TAG2TAG2

90090090090018001800TAG1TAG1

Messages Messages 
ReceivedReceived

Messages SentMessages SentTotal Data Total Data 
BytesBytes

StrategyStrategy



Thank you!Thank you!

More questions?More questions?



Multipath Multipath RoutingRouting

Braided Paths:Braided Paths:

Two paths from the 
source to the sink 
that differ in at least 
two nodes



Design Objectives (cont)Design Objectives (cont)

Final aggregate is exact if at least one representative Final aggregate is exact if at least one representative 
from each leaf survives to reach the sink.from each leaf survives to reach the sink.
This won’t happen in practice in This won’t happen in practice in sensornets sensornets without without 
extremely high cost.extremely high cost.
It is reasonable to hope for approximate results.It is reasonable to hope for approximate results.

We argue that it is reasonable to use aggregation We argue that it is reasonable to use aggregation 
methods methods that are themselves approximatethat are themselves approximate..



Goal of This WorkGoal of This Work

So far, we’ve seen ideas ofSo far, we’ve seen ideas of
–– InIn--network aggregation (low traffic per link)network aggregation (low traffic per link)
–– MultiMulti--path routing (reliability of individual items)path routing (reliability of individual items)

These usually don’t combine wellThese usually don’t combine well
–– Only works for duplicateOnly works for duplicate--insensitive aggregates insensitive aggregates 

such as MIN/MAX, AND/ORsuch as MIN/MAX, AND/OR

What about all the other aggregates?What about all the other aggregates?
–– We want them cheap, reliable, and correctWe want them cheap, reliable, and correct



Contributions of This WorkContributions of This Work

Propose Propose duplicateduplicate--insensitive sketchesinsensitive sketches to to 
approximatelyapproximately aggregate dataaggregate data
–– Difficulty was noted [MFHH’02]Difficulty was noted [MFHH’02]
–– Approximation is necessaryApproximation is necessary

With duplicateWith duplicate--insensitive sketches, insensitive sketches, anyany
bestbest--effort routing method can be employedeffort routing method can be employed
Design Design new duplicatenew duplicate--insensitive sketchesinsensitive sketches
–– SUM => MEAN, VARIANCE, STDEV, …SUM => MEAN, VARIANCE, STDEV, …



Routing MethodologiesRouting Methodologies

Considerable work on reliable delivery via Considerable work on reliable delivery via multipath multipath 
routingrouting
–– Directed diffusion [IGE ’00]Directed diffusion [IGE ’00]
–– “Braided” diffusion [GGSE ’01]“Braided” diffusion [GGSE ’01]
–– GRAdient GRAdient Broadcast [YZLZ ’02]Broadcast [YZLZ ’02]

Broadcast intermediate results along gradient back to sourceBroadcast intermediate results along gradient back to source
Can dynamically control width of broadcastCan dynamically control width of broadcast
Trade off fault tolerance and transmission costsTrade off fault tolerance and transmission costs

Our approach similar to GRAB:Our approach similar to GRAB:
–– Broadcast. Grab if upstream, ignore if downstreamBroadcast. Grab if upstream, ignore if downstream

Common goalCommon goal: try to get at least one copy to sink: try to get at least one copy to sink



SUM Sketches (cont)SUM Sketches (cont)

Remaining questions:Remaining questions:
–– What should What should SS be when inserting <be when inserting <k, vk, v>?>?

When using analysis of [FM’85]When using analysis of [FM’85]
–– S ≈ logS ≈ log22(v) (v) –– 2 log2 log22 log(v)log(v)
–– Expected time = Expected time = O(logO(log22(v)) + sample time(v)) + sample time

Can go farther keeping high probability…Can go farther keeping high probability…
–– S ≈ logS ≈ log22(v) (v) –– loglog22 log(v)log(v)
–– Expected time = Expected time = O(log(v)) + sample timeO(log(v)) + sample time

–– How do we sample the binomial distribution?How do we sample the binomial distribution?
Space requirements may affect choice of Space requirements may affect choice of SS



SUM Sketches (cont)SUM Sketches (cont)

Reduction to COUNT sketches:Reduction to COUNT sketches:
–– Pick a prefix length Pick a prefix length SS

The first The first SS bits should be set with high probability.bits should be set with high probability.

–– Set the first Set the first SS bits to one.bits to one.
–– Sample from Sample from BB(v, 2(v, 2--SS)) to figure out how many to figure out how many 

items would pick bits after the first items would pick bits after the first SS bits.bits.
–– Simulate the insertion of those items.Simulate the insertion of those items.

Expected time = Expected time = 
O(S) + sample time + O(v·2O(S) + sample time + O(v·2--SS))



Sampling ConstraintsSampling Constraints

Sensor motes have very limited resourcesSensor motes have very limited resources
–– Slow CPUSlow CPU
–– Very little RAMVery little RAM
–– No floating point hardwareNo floating point hardware

Sampling from Sampling from BB(n, p)(n, p) isn’t easy normallyisn’t easy normally
–– Obviously Obviously O(log n)O(log n) time and time and O(n)O(n) spacespace
–– O(O(npnp)) expected time (and good FP hardware) expected time (and good FP hardware) 

with standard reduction to geometric distributionwith standard reduction to geometric distribution

How hard is this sampling problem anyway?How hard is this sampling problem anyway?



COUNT COUNT vs vs Diameter (grid)Diameter (grid)



COUNT COUNT vs vs Link Loss (random)Link Loss (random)


