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On the Curve/Point Set Matching Problem

Paul Accisano∗ Alper Üngör ∗

Abstract

Let P be a polygonal curve in Rd of length n, and S
be a point set of size k. We consider the problem of
finding a polygonal curve Q on S such that all points in
S are visited and the Fréchet distance between Q and
P is at most a given ε. We show that this problem is
NP-complete, regardless of whether or not the points of
S are allowed to be visited more than once.

1 Introduction

Measuring the similarity between two geometric objects
is a fundamental problem in many fields of science and
engineering. However, to perform such comparisons, a
good metric is required to formalize the intuitive concept
of “similarity.” Among the many metrics that have been
considered, Fréchet distance has emerged as a popular
and powerful choice, especially when the geometric ob-
jects are curves. Shape matching with Fréchet distance
has been applied in many different fields, including hand-
writing recognition [7], protein structure alignment [5],
and vehicle tracking [3].

In this abstract, we consider the basic problem of mea-
suring the similarity of two polygonal curves. However,
in our problem, the input is only partially defined. In-
stead of being given both curves, we are given only one
polygonal curve P as well as a point set S. Our problem
is to complete this partial input by constructing a polyg-
onal curve Q that best matches the given curve, under
the restriction that the constructed curve’s vertices are
exactly S. We show that, under the Fréchet distance
metric, this problem is NP-complete. Figure 1 shows an
example problem instance and its solution.

2 Previous Work and New Results

Given two curves P,Q : [0, 1] → Rd, the Fréchet
distance between P and Q is defined as δF (P,Q) =
infσ,τ maxt∈[0,1] ‖P (σ(t)), Q(τ(t))‖, where σ, τ : [0, 1]→
[0, 1] range over all continuous non-decreasing surjective
functions [4].

The decision version of the Fréchet distance problem
asks, given two geometric objects and a real number
ε > 0, is the Fréchet distance between the two objects less

∗Dept. of Computer & Info. Sci. & Eng., University of Florida,
{accisano, ungor}@cise.ufl.edu

ε

Figure 1: A problem instance and its solution. The input
is the solid line and the circle points, and the solution is
the dotted line.

than or equal to ε? Alt and Godau [1] showed that, when
the objects in question are polygonal curves of length
n and m, this problem can be solved in O(nm) time.
They also showed that finding the exact Fréchet distance
between the two curves can be done in O(nm log(nm))
time using parametric search.

Maheshwari et al. [6] examined the following variant
of the Fréchet distance problem, which we refer to as
the Curve/Point Set Matching (CPSM) problem. Given
a polygonal curve P of length n, a point set S of size k,
and a number ε > 0, determine whether there exists a
polygonal curve Q on a subset of the points of S such
that δF (P,Q) ≤ ε. They gave an algorithm that decides
this problem in time O(nk2). They also showed that the
curve of minimal Fréchet distance can be computed in
O(nk2 log(nk)) time using parametric search.

Wylie and Zhu [8] also explored the CPSM problem
from the perspective of discrete Fréchet distance. In con-
trast to the continuous Fréchet distance defined above,
the discrete Fréchet distance only takes into account the
distance at the vertices along the paths. They formu-
lated four versions of the CPSM problem depending on
whether or not points in S were allowed to be visited
more than once (Unique vs. Non-unique) and whether
or not Q was required to visit all points in S at least
once (All-Points vs. Subset) They showed that, under
the discrete Fréchet distance metric, both non-unique
versions were solvable in O(nk) time, and both unique
versions were NP-complete.

In this abstract, we show that the Continuous All-
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Points versions of the CPSM problem, both Unique and
Non-unique, are NP-complete. Table 1 shows the eight
versions of the problem, with our results highlighted.

Discrete Continuous

Subset Unique NP-C [8] Open
Non-Unique P [8] P [6]

All-Pts Unique NP-C [8] NP-C*
Non-Unique P [8] NP-C*

Table 1: Eight versions of the CPSM problem and their
complexity classes. New results starred.

3 Reduction Outline

The well-known 3SAT problem takes as input a Boolean
formula with clauses of size 3, and asks whether there
exists an assignment to the variables that makes the
formula evaluate to TRUE. If we restrict the input to
formulas in which each literal occurs exactly twice, the
problem becomes the (3,B2)-SAT problem. This may
seem to be a rather extreme restriction, and, indeed,
formulas of this type with less than 20 clauses are always
satisfiable. However, despite this restriction, the problem
was shown to be NP-complete in [2], and an example of
an unsatisfiable formula with 20 clauses was presented.

Let Φ be a formula given as input to the (3,B2)-SAT
problem. We construct a polygonal curve P and a point
set S such that Φ is satisfiable if and only if there exists
polygonal curve Q whose vertices are exactly S with
Fréchet distance at most ε from P . Our construction
is somewhat lengthy and involves the construction of
a complex gadget, as well as a number proofs about
its properties. For this reason, we provide only a brief
summary of the construction in this abstract.

First, we construct a gadget consisting of components
of P and S that will force any algorithm to choose
between two possible polygonal path constructions. The
gadget is constructed in such a way that these two choices
are the only possible polygonal paths along the gadget’s
component of S with Fréchet distance at most ε from P .
These two path possibilities will correspond to TRUE
and FALSE assignments for a given variable.

Then, we create a series of points in S to represent
the clauses in Φ, one point for each clause. For each
variable, a gadget will be placed so that the pair clause
points representing the clauses in which the variable’s
positive instances occur are only reachable along one of
the two curve possibilities, and likewise for the negative
instances. Once this has been done for each variable in
Φ, any polygonal curve Q whose vertices are exactly S
with Fréchet distance at most ε from P will correspond
to an assignment to the variables of Φ in which every
clause is satisfied, thus making the formula evaluate to

TRUE. Furthermore, if no such curve exists, then there
can be no such satisfying assignment for Φ.

Given that the problem of determining the Fréchet
distance between two given polygonal curves is in P, the
CPSM problem is clearly in NP. This leads to our main
result.

Theorem 1 The All-points Continuous CPSM Problem
is NP-complete.

There are still a number of details that have been
omitted for the sake of brevity, including the proof that
placing the gadgets in the necessary positions is always
geometrically possible. These will be included in our full
paper. We also plan to explore various generalizations of
this problem. For example, the given geometric object
could perhaps be a tree or graph, or the point set could
be given as imprecise points or regions.
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Identifying Common Portions between Two Trajectories
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1 Introduction
Trajectories are functions from a time domain—an inter-
val on the real line—to Rd with d > 1, and observed as
sequences of points sampled from them. A fundamental
problem in analyzing this data is that of identifying com-
mon patterns between pairs or among groups of trajecto-
ries observed as sequences of sampled points.

Let P = 〈p1, . . . , pm〉 and Q = 〈q1, . . . , qn〉 be two
sequences of points in Rd, sampled from two trajectories
γ1 and γ2 defined over the time interval [0, 1]. For sim-
plicity, we assume that P and Q are points sampled from
the images of the trajectories and we ignore the temporal
component.1 Since, in practice, the underlying continu-
ous trajectories γ1 and γ2 are not known but we observe
only the sampled points P and Q, we will work in the
discrete setting where we are only concerned with these
sample points. In this abstract, we will refer to the dis-
crete sample points P , Q as the input trajectories.

We wish to compute correspondences between points
belonging to similar portions of these trajectories while
distinguishing these portions from the dissimilar ones.
The following issues with trajectory sampling must
be taken into account when identifying similarity: (i)
significantly different sampling rates, (ii) presence of
noise/outliers which must be distinguished from dissim-
ilarities, and (iii) presence of significant unobserved por-
tions on the trajectories with no sample points.

Background. A common choice for measuring trajectory
similarity is the Fréchet distance [1] defined as follows. A
reparameterization is a continuous non-decreasing surjec-
tion α : [0, 1]→ [0, 1], such that α(0) = 0 and α(1) = 1.
The Fréchet distance Fr(γ1, γ2) is given by:

Fr(γ1, γ2) = inf
α,β

max
t∈[0,1]

‖γ1(α(t))− γ2(β(t))‖,

where ‖ · ‖ is the underlying norm (typically the Eu-
clidean norm), and α and β are reparameterizations of

1Strictly speaking, a trajectory is the graph of the underlying func-
tion, and what we have are the curves traced by the two trajectories, but
we will not distinguish between the two.

(a) (b)

(c) (d)

Figure 1. Comparison of measures: (a) Fréchet distance, (b) average
Fréchet distance, (c) sequence alignment based method, (d) our model.
Green edges indicate correspondences.

[0, 1]. Since we only observe a finite set of sample points,
we may define a discrete version of the Fréchet distance
where the reparameterizations are discrete functions re-
stricted to the sampled points P and Q.

A set of correspondences yielding the optimal Fréchet
distance is not necessarily a good indicator of similar-
ity due to the large number of such correspondences; see
Fig. 1(a). The average Fréchet distance which minimizes
the average distance of the correspondences rather than
the maximum distance provides a better set of correspon-
dences. However, if there are significant dissimilar por-
tions, possibly due to actual deviations rather than out-
liers, the results are not meaningful due to the requirement
of correspondences for all points; see Fig. 1(b).

In computational biology, the technique of pairwise se-
quence alignment [2, cf. Chapter 2] is designed to distin-
guish similar and dissimilar portions between biological
sequences. Given two sequences A and B, their align-
ment is expressed by writing them in two rows such that
similar characters are placed in the same column. Charac-
ters in one sequence with no similar character in the other
sequence are aligned with a blank character. A maximal
contiguous sequence of blank characters is termed a gap.
The goal is to optimize a scoring function which assigns
a score for aligning two characters (incentive or penalty
depending on their similarity) and a penalty for gaps.

We may extend the sequence-alignment model to the



(a) (b) (c)

Figure 2. Real data: (a) average Fréchet distance, (b) sequence alignment based approach, (c) our model. Green edges indicate correspondences.

alignment of trajectories with the choice of an appropri-
ate scoring function. However, as Fig. 1(c) shows, non-
uniform sampling rates cause similar portions to be des-
ignated as gaps since correspondences are one-to-one.

2 Model
As noted above, the average Fréchet distance yields good
correspondences for similar portions even with different
sampling rates while sequence alignment identifies dis-
similarities accurately. We capture the advantages of the
these two methods under a unifying notion of assign-
ments.

Definition 2.1. An assignment for P and Q is a pair of
functions α : P → Q ∪ {⊥} and β : Q → P ∪ {⊥}
for the points of P and Q respectively. If α(pi) = ⊥
(or β(qj) = ⊥), then pi (or qj) is called a gap point. A
maximal contiguous sequence of gap points in P or Q is
called a gap. An assignment is monotone if it satisfies the
following conditions: (i) if α(pi) = qj implies that for all
i′ > i, α(pi′) ∈ {⊥}∪{qj+1, . . . , qn}, (ii) β(qj) = pi im-
plies that for all j′ > j, β(qj′) ∈ {⊥} ∪ {pi+1, . . . , pm}.

Intuitively, if a point pi ∈ P lies on a similar portion of
the two trajectories then α(pi) defines the point on Q to
which pi corresponds, and pi is a gap point otherwise. A
similar interpretation holds for β(·). Let Γ(α, β) denote
the set of gaps in P and Q for the assignment α, β. We
define the score of α, β, denoted by σ(P,Q;α, β), as

σ(P,Q;α, β) =
∑
pi∈P
α(i)6=⊥

1

c+ ‖pi − α(pi)‖2

+
∑
qj∈Q
β(j)6=⊥

1

c+ ‖qj − β(qj)‖2
+

∑
g∈Γ(α,β)

(
a+ ∆ · |g|

)
,

where a,∆ and c are carefully chosen parameters, ‖ · ‖ is
the L2-norm and |g| is the length of a gap g. For a pair
of points pi ∈ P and qj ∈ Q, the difference in values
1/(c+‖pi− qj‖2 versus ∆ dictates the choice of whether
to assign α(pi) = qj or β(qj) = pi versus assigning one
or both as gap points. Thus, ∆ is chosen based on a dis-
tance threshold for similarity. The parameter a is used to

avoid extremely short gaps (of length less than l for some
l > 0) which may be due to outliers rather than actual
deviations and is set to −l∆.

A monotone assignment α, β which maximizes
σ(P,Q;α, β) may be found by a dynamic programming
algorithm in timeO(mn). This is essentially a more com-
plicated version of the algorithm for sequence alignment.
Fig. 1(d) shows the results which perform similarly to the
average Fréchet correspondences in the similar portions
while distinguishing the dissimilar portions as accurately
as the sequence alignment based approach.

3 Discussion
Our framework is not limited to the scoring function de-
scribed. For example, the sequence-alignment based ap-
proach, average Fréchet distance or other measures such
as adaptations of edit-distance are easily incorporated into
our model. Further, we may extend the dynamic pro-
gramming algorithm to compute locally similar portions
instead of global trajectory similarity in a manner similar
to local alignment of sequences.

We have conducted experiments comparing the aver-
age Fréchet distance, sequence alignment and our model
on a dataset of 145 trajectories of school buses in Athens,
Greece [3]. Fig. 2 shows the comparison for a pair of tra-
jectories from this set. As is clearly seen, sequence align-
ment “finds” the dissimilar portions accurately but the on
close examination, we note that there are gaps even in the
similar portions. This is rectified by our model which per-
forms similarly to average Fréchet distance in the similar
portions while avoiding dissimilar portions accurately.
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Transformations to critical arcgons:
progress on tighter bounds for Delaunay stretch

Jack Snoeyink† Vishal Verma†

Abstract

Chew observed that the stretch factor of L2 Delaunay

triangulations was at least π/2 in the paper that also es-

tablished the L1 Delaunay as the first geometric spanner;

recent examples have raised the lower bound to 1.5932.

The upper bound of 2.45 established in 1992 has also re-

cently come down to below 2 by Xia. We outline a pro-

gram that brings both upper and lower bounds closer to

1.6 by characterizing the properties of examples that are

maximal under local transformations. Here we describe

the characterization and our plan of bounding the stretch

factor of L2 Delaunay triangulations.

1 Introduction

The Delaunay stretch of a point set S is the maxi-
mum, for all pairs p, q ∈ S, of the ratio of the length
shortest path from p to q in the Delaunay triangu-
lation of S over |pq|. It is known that the Delau-
nay stretch for any point set is upper bounded by
a constant [3, 4]. The best bounds published [5, 6]
until now are [1.5932, 1.998]. Our project aims to
narrow this interval, by transforming examples into
canonical form without decreasing stretch. Our plan
is sketched in three section: In Sec. 2 we transform
any given point set to an arcgon. In Sec. 3 we trans-
form any arcgon to a max arcgon. In Sec. 4 we bound
the stretch factors of max arcgons, thus bounding the
Delaunay stretch.

2 Counterexamples and Arcgons

Fig. 1(a,b) shows example point sets with high Delau-
nay stretch. The points lie densely along the bound-
ary of a union of discs. By controlled perturbation
into general position, Delaunay edges in the disc in-
teriors can be directed to preserve Delaunay stretch.
This construction as a sequence of discs helps find
lower bounds, but also helps compute upper bounds.

An arcgon is defined as an embedded graph whose
• edges are either circular arcs or straight lines.

†Department of Computer Science, University of North
Carolina at Chapel hill. Email: {snoeyink,verma}@cs.unc.edu

q

p

Figure 1: Point sets with high Delaunay stretch (a)
κ = 1.5846 from [1], (b) our κ = 1.59324. Bal-
anced (equal length) paths around three face types:
(c) wedge, (d) anti-parallel stump, (e) parallel stump

• faces f are convex subsets of a disc c with vertices
on the boundary of c in a sequence. The ends are
circle segments, with special vertices p and q. In-
terior faces are wedge with 3 edges (Fig. 1(c)) or
stump with 4 (Fig. 1(d,e)).

• outer boundary contains only circular arc edges.
The edges in the interior, called diagonals, are
straight line edges that connect the points of in-
tersections of two neighboring discs.

Arcgons must satisfy two empty circle properties:
Local Delaunay: Vertices of face f lie on or out-
side of circles of neighboring faces of f .
pq-Delaunay: p, q on or outside circles of all faces.
In realizable arcgons, all diagonals intersect pq.

From a given point set S we can extract a realizable
arcgon without decreasing Delaunay stretch, κ.

Lemma 1 Let p, q ∈ S attain the maximum Delau-
nay stretch κ in the Delaunay triangulation of the
points S. There is a realizable arcgon for which pq
has a stretch factor ≥ κ.
Proof Sketch: From the Delaunay triangulation of
S, take the sequence of triangles that intersect the
interior of segment pq. Then in every triangle of this
sequence, replace the edges that do not intersect the
pq with the corresponding arcs of the circumcircle.
Similar transformations have been used in [2, 4, 5].

3 Max Arcgons

Define the complexity of an arcgon to be the number
of its faces. A max arcgon has stretch factor greater
than all realizable arcgons of lower complexity, and



not less than all realizable arcgons of equal complex-
ity. Thus, Delaunay stretch is bounded by the stretch
factor of max arcgons.

We now characterize max arcgons by studying local
transformations

Lemma 2 In a max arcgon A, the segment pq does
not pass through the endpoints of any of the diagonals

We say that an edge e of an arcgon is critical if
some shortest path between p and q passes through
e. We can show that in max arcgons all edges are
critical. Here we sketch the proof for one case.

Lemma 3 In a max arcgon A, the circular arc edges
of every stump face f are critical

Proof Sketch: Let L be the part of the arcgon to
the left of the face f and R be the part to the right. If
an arc-edge of f , say e, is not critical then we can in-
crease the stretch factor κ of A by rotating R about
the center, o, of the circle associated with the face
f . We parameterize this rotation on the angle θ sub-
tended by the arc-edge e at o. Let (′) be represent the
derivative with respect to θ. We show that κ′′ > 0
whenever κ′ = 0 i.e. κ can be increased by increasing
or decreasing θ.

Using similar first derivative and second derivative
analysis we can prove the following lemma:

Lemma 4 Every max arcgon is realizable and
• The arc-edge of any wedge face is critical
• Diagonals adjacent to any stump face are critical
• Circular arc edges of two neighboring wedge faces
cannot coincide.

We are currently working to complete the proof
that any diagonal adjacent to two wedge faces is crit-
ical. Together with Lem. 4, this would imply:

Claim 5 (To be established) All the edges of a
max arcgon are critical

This claim constrains max arcgons to a class we call
critical arcgons.

4 Upper bound on critical arcgons

In a critical arcgon interior faces are of three types:
balanced wedge: the length of the arc edge equals
the sum of the two diagonals (Fig. 1(c)).

balanced anti-parallel stump: the difference in
lengths of the two circular arc edges equals the sum
of the two diagonals (Fig. 1(d)).

balanced parallel stump: the difference in
lengths of the circular arc edges equals the differ-
ence in the diagonals (Fig. 1(e)).

Claim 6 Let A be a critical arcgon, `(A) be the
length of the shortest path between the special ver-
tices p, q of A. Let d(A) be the length of the shortest
geodesic path between p and q that passes through the
faces of A. Let L(A) be half of the perimeter of the
arcgon A minus the end faces. Then,

g(A) = `(A)− π

2
d(A)− 0.04L(A) ≤ 0

Note that if the critical arcgon is also realizable
(as is the case with max arcgons) then d(A) equals
|pq|. Moreover L(A) ≤ `(A). Thus the above lemma
immediately implies,

Theorem 7 For a realizable critical arcgon A, the
stretch factor

`(A)/|pq| ≤ π

2(1− 0.04)
≤ 1.636245

A construction of a critical arcgon raises the lower
bound as well, so the maximum stretch factor of De-
launay triangulations would lie in [1.59324,1.63625].
Proof Sketch for Claim 6: The proof is by induc-
tion on the number of faces of the critical arcgon. The
proof divides into three cases depending on whether
the penultimate face (q is on the last face) is a bal-
anced wedge, parallel, or anti-parallel stump. We can
show that g(A) attains a maximum when p lies on this
penultimate face. The final inequality is established
numerically. �
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A Geometric Workbench for Degree-Driven Algorithm Design

Jack Snoeyink ∗ Clinton Freeman ∗

Abstract. We recall the design and implementa-
tion of a geometric algorithm workbench for imple-
menting and presenting degree-driven geometric al-
gorithms.

1 Introduction

Two and three dimensional geometric algorithms are
often difficult to implement and convey to others.
Algorithm implementers need to correct program-
ming errors and ensure that degenerate situations
are handled correctly. Traditional debuggers provide
only textual or numerical representations of geomet-
ric data structures, and generating degenerate geo-
metric input is a nontrivial task for which there is
often little recourse. Algorithm presenters need to
convey their ideas to audiences of researchers and stu-
dents. Many presenters tend to use static depictions
with verbal explication of algorithm mechanics. This
type of presentation does not fully capture the dy-
namic nature of algorithms, and can be difficult for
the audience to follow.

A geometric algorithm workbench aids algorithm
implementers and presenters by providing facilities to
dynamically visualize geometric algorithms. Imple-
menters can visually inspect geometric relationships
and properties of data structures, enabling quick
recognition of erroneous computations. Presenters
can produce animations of their algorithms, affording
a clearer means of conveying essential ideas to their
audience. Both types of geometers can interactively
control the flow of execution and easily generate or
visually specify degenerate input data.

Degree-driven algorithm design encourages robust
geometric computing by minimizing an algorithm’s
arithmetic precision with its running time and space
[5]. Millman built a C++ library (DDAD) to facilitate
the implementation of these algorithms; our aim is
to build a workbench to support users of DDAD. The
creation of this workbench mostly requires the appli-
cation of techniques developed in previous software
visualization research, but the addition of precision

∗Department of Computer Science, University of North Car-
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Figure 1: A user watches as Melkman’s algorithm
handles a degenerate situation.

as a constraint provides for new avenues of explo-
ration.

We begin by briefly reviewing previous workbench
systems. Next, we explain how our current system’s
facilities satisfy each user type and significant deci-
sions we made during their implementation. Finally,
we conclude with a discussion of how we can extend
our system moving forward.

2 Previous Work

Initially, we spent some time reviewing existing soft-
ware visualization systems to see if any might help
us implement and present our algorithms. In 1997,
Dobkin and Hausner [4] reviewed four geometric visu-
alization systems: Workbench, XYZ GeoBench, Ge-
omview, and GASP. Unfortunately, while these sys-
tems presented different ways of solving foundational
challenges, support has long been discontinued. We
also considered the Geometry Center’s GeoLab [2]
and Stasko’s [7] more general algorithm animation
software such as POLKA, SAMBA, and XTANGO,
and found them similarly unsupported. Lacking a
working geometric workbench, we decided to build
our own system.

3 User Facilities

Two simple 2D convex hull algorithms, SlowConvex-
Hull [1] and Melkman’s algorithm [6], provided

1



the initial target inputs for the system. For each
algorithm, we first programmed an implementation,
then recorded animations of them running on exam-
ple input data to produce a corresponding Youtube
video 1. This development process placed us in
the position of both implementer and presenter, and
led us to develop facilities appropriate for both user
types.

As implementers, we desired a system with four
major capabilities. First, we needed a means of ma-
nipulating input data into degenerate situations to
test that special cases were handled correctly. Sec-
ond, we needed to run the algorithm and visually
display the results of final and intermediate calcula-
tions. Third, upon discovering an incorrect result, we
needed to single step the algorithm from the begin-
ning on the same input data in order to see where
the algorithm went awry. Finally, we needed visual-
ization code to minimally invade our implementation
code.

In response, our system provides four correspond-
ing facilities. First, our system randomly generates
either a random point set or simple polyline, and
clicking and dragging moves vertices into different
configurations. Second, our system maintains dis-
play lists which are updated as interesting events [3]
occur. Third, our system uses threading to control
the speed of execution and provides UI controls for
starting, pausing, single stepping, and resetting the
algorithm. Finally, our system embeds low level vi-
sualization functions in higher level geometric types
to maintain code readability and ensure visualization
consistency.

As presenters, implementer facilities already satis-
fied many of our needs, producing animations that
captured the essential characteristics of each algo-
rithm. However, we desired two additional capabili-
ties: we needed to convey information not necessary
for implementation purposes, and view the same al-
gorithm in different ways. In response, our system
provides two corresponding facilities: visualizations
of arbitrary primitives that aren’t directly used by the
algorithm, and a passive model-view-controller archi-
tecture that can be extended with custom views.

4 Engineering Decisions

Two engineering decisions are of particular inter-
est. First, we wanted to use model-view-controller
to structure our design, but needed the traditional
model concept to encompass a geometric algorithm.

1See: http://cs.unc.edu/~freeman/GAV/

Extracting visual representations of operations and
data structures without user guidance is a difficult, if
not impossible, task. We decided to maintain a sepa-
rate visual model of display lists, which the algorithm
implicitly updates. Second, we needed to track visual
semantics on geometric primitives so previous states
could be restored (e.g. a hull segment is invalidated).
We decided to store a semantic stack for each prim-
itive; low level visualization functions push and pop
new states as the algorithm executes.

5 Conclusion

Implementing a geometric algorithm workbench is a
challenging task with a rich set of problems encom-
passing a variety of disciplines. While we continue
extending our system by animating more algorithms,
two questions provide opportunities for further ex-
ploration. First, how can we extend our workbench
to highlight precision as a resource? An answer will
help thematically differentiate the project from pre-
vious work. Second, given that so many past systems
fell into disuse, how can we build our workbench to
have better longevity? An answer will help solidify a
foundation for future work.

Our workbench continues to grow and has not yet
reached a state suitable for distribution to the ge-
ometry community. As the underlying design and
outward interface stabilize, we will release a version
for download 1.
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Tactix on an S-shaped Board
John Iacono and Kostyantyn Mazur

Polytechnic Institute of New York University

Abstract

Tactix is a geometric variant of the classic game
Nim. A full characterization of a class of instances
of Tactix is presented where it is shown how to effi-
ciently compute which player has a winning strategy.

Nim. The classic game Nim is traditionally played
with some distinct piles of objects such as coins.
There are two players which take turns alternately.
Each player may take any number of objects from
any pile (from one object to the entire pile), but may
only take from the one pile that the player chooses
for that turn. After each turn, the piles grow smaller,
and eventually, all the objects are gone. There are
two versions of Nim that differ on what happens
then: Nim with the normal play convention has the
player that takes the last counter win, while misère
Nim has this player lose. Nim is a decidely one-
dimnesional game; in this paper we consider a natural
two-dimensional geometric variant of Nim.
TacTix. TacTix, a game invented by Piet Hein, is
a two-dimensional version of Nim. TacTix is also a
two-player game. There is a 4 × 4 grid of counters,
and each player is allowed to take any horizontal or
vertical sequence of consecutive counters. TacTix is
played with the misère rule, meaning that the player
that takes the last counter loses. TacTix has been
solved; the second player has a winning strategy [1].

If the normal play convention were used, then this
would be more obvious; the second player could make
the 180◦ rotation of whatever move that the first
player chose, and repeat until the last counter. This
strategy would also work on a square grid of even
size, or on a rectangular grid with both dimensions
even. On a rectangular grid with one odd dimen-
sion, the first player has a winning strategy: take
the entire middle column (or row, if there is an odd
number of rows), which leaves two rectangular boards
of equal size, and copy whichever move the second
player chooses to make on one board on the other
board. However, these strategies do not work in Tac-
Tix, where the misère convention is used.

Tactix. Tactix is a variation of TacTix (note
lower case t), played with the normal play conven-
tion (the rules regarding legal moves are the same).
Since requiring a rectangular starting position makes
this game trivially solved, any subset of a rectangular
grid is an allowable starting position in Tactix.
Impartial Games. All three games (Nim, Tac-
Tix, and Tactix) share the property of the allowable
moves depending only on the game position and not
on which of the two players is on move. Such games
are called impartial games. This condition negates
the requirement of stating who is on move; each po-
sition has a specific result with reference to whoever
is on move. Most games are not impartial; for in-
stance, Go is not impartial, since a player can only
play a stone of the color assigned to the player.
Finite Games. All three games also share the prop-
erty of being finite. A finite game is one where, if it is
played starting in any given position, a final result is
always reached after no more than a number of moves
that only depends on the starting position. In any of
these three games, each move removes at least one
counter (or object in the case of Nim), and the game
is decided when there are no more counters (or ob-
jects), so the number of moves played is at most the
number of counters. One way for a game not to be
finite is if a position can be repeated by a sequence of
moves without a rule governing what happens then.
Chess without the threefold repetition or 50 move
rules is an example of a game that is not finite. How-
ever, with the 50-move or threefold repetition rules,
the game of Chess is finite.
Sprague-Grundy. TacTix is equivalent to Nim,
as are all impartial games with the normal play con-
vention, by the Sprague-Grundy theorem [3,4]. This
gives each starting position a so-called Nim value,
also known as the nimber or Grundy value. The Nim
value of a position is given as the lowest nonnegative
integer that is not the Nim value of any resulting po-
sition after any move (and it is zero for a position
with no legal moves). There is an efficient way to
calculate the Nim value of a disjoint combination of
two or more of these games (where the games are
played simultaneously and a legal move is selecting
one game and making a legal move there), namely
that the Nim value of the combination is the bitwise



XOR of the Nim values of the individual games. A
Nim value gives a determination of whether or not the
first player has a winning strategy: the first player
has a winning strategy unless the Nim value is zero.
This gives a recursive way to compute the Nim value
of a position, but it can easily be exponential to com-
pute for general positions in certain games, even with
dynamic programming.

Thus the main question one can ask in the study
of a particular game is, how efficiently can you de-
termine which player has a winning strategy? For an
impartial and finite game with the normal play con-
vention, this can be done by deriving an algorithm to
compute the Nim value of the game.
Monotonic boards. For Tactix boards of the
form, which are shaped like a staircase and which
we call monotonic:

× · · · ×
× · · · ×

· · · · · · · · ·
× · · · ×

where × represents a counter, there is a polynomial-
time dynamic programming algorithm to compute
the Nim value, similar to the solution to Linear
Cram described in [2]. Removing any counters leaves
two disjoint groups of counters, henceforth each move
must be entirely in one group or the other. The Nim
value of the resulting combination is the bitwise XOR
of the Nim values of the two groups left. In the di-
rect solution generated by the definition of the Nim
value, there are only O(n2) (where n is the number
of counters) possible connected groups, one per start
and end point, the calculation of the Nim value of
each only requires a polynomial number of lookups of
Nim-values of smaller connected groups (as there are
only O(n2) legal moves in any position). When such
a Nim value is obtained, it is memoized, or stored in a
table to be looked up later. This ensures that the Nim
value of any given connected group is calculated only
once. This solution thus runs in polynomial time,
O(n4) if log n is word-sized.

If the vertical connections were entirely disallowed,
then there is an easy solution, namely calculating
the bitwise XOR of the number of counters on each
row, since this is nothing more than Nim. This
method does not work for monotonic Tactix, be-

cause of the possibility of a vertical move (taking two
vertically-adjacent counters). This raises a question:
is there a method of computing the Nim value that
is faster than the dynamic programming algorithm?
Our main result is that if the number of lines is lim-
ited to two, then the answer is yes. This is the type
of starting position we call a S-shaped board :

× · · · ×
× · · · ×

Result. The Nim value of a Tactix game on an
S-shaped board with a counters on the top and b
counters on the bottom is:

r(a, b) =



r(a′, b′), r(a′, b′) < a′ + b′

a′ + b′ + 1, r(a′, b′) = a′ + b′

and a′ + b′ < m− 1

a + b, r(a′, b′) = a′ + b′

and a′ + b′ ≥ m− 1

where m is the lowest power of 2 below or at a, a′ =
a−m, and b′ = b−m. This only applies if the lowest
power of 2 below or equal to b is also m; if not, then
the Nim value is simply the number of counters.

This formula can be evaluated in time O(log n),
where n = a + b.

The proof of this result can be found as Lemma 23
in the draft which was submitted with this paper,
the proof of which occupies pages 23-42. Efficiently
determining which side has a winning strategy for
more general versions of Tactix remains open.
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Packing identical simple polygons
is NP-hard

Sarah R. Allen and John Iacono
Polytechnic Institute of New York University

Abstract
Given a small polygon S, a big simple polygon B and
a positive integer k, it is shown to be NP-hard to
determine whether k copies of the small polygon (al-
lowing translation and rotation) can be placed in the
big polygon without overlap. Previous NP-hardness
results were only known in the case where the big
polygon is allowed to be non-simple. A novel reduc-
tion from Planar-Circuit-SAT is presented where
a small polygon is constructed to encode the entire
circuit.
Introduction.

Packing is a fundamental problem in computational
geometry. In this paper we study the problem of
packing multiple copies of a small object inside a big
object:
Simple Polygon Packing. Given a small simple
polygon S, a big simple polygon B, and a positive
integer k, is it possible to place k copies (allowing
translation and rotation) of the small polygon inside
the big polygon without overlap?

This problem was heretofore neither known to be
in P, nor in NP, nor to be NP-hard. Here we show it
is is NP-hard.

Our result is the first to establish the hardness of
packing of multiple copies of a simple polygon inside
another simple polygon. Previous reductions for re-
lated problems fall into two categories. In the case
of multiple small polygons, a reduction from Knap-
sack or Partition is easy. In the case of having a
nonsimple big polygon, the reduction in [3] is from
Planar-Circuit-SAT. Such a reduction creates a
big polygon which is essentially a drawing of the cir-
cuit, where the interior of the big polygon represents
the wires and the gates, but where there are holes be-
tween all of the wires. Without the ability to literally
create a big polygon that uses holes to create a circuit
drawing, nothing was known. Our construction is also
a reduction from Planar-Circuit-SAT, but in a
completely different manner. Previously the circuit
was encoded in the big polygon; our big polygon is

independent of all aspects of the circuit, other than
the circuit size, while the circuit is encoded entirely
in the small polygon.

However, because our construction creates a small
polygon which is nonconvex and polynomial in size,
there remains a range of open problems relating to
the packing of identical polygons. The simplest such
variation (most likely to be in P) would be: given
as the big polygon an orthogonally convex simple
polygon drawn on a unit grid, how many grid-aligned
2 × 2 unit squares can be packed? (This is a slightly
easier variant of problem 56 on the Open Problems
Project [1], which was shown to be in NP in [2]).
Reduction overview. We give here a very high
level description of our reduction. We reduce from
a variant of circuit-sat where the circuit is drawn in
a planar embedding on an n × n grid. The idea is
to have our small polygons be unit-square-like where
n2 of them can only pack into a slightly larger than
n× n-sized square-like large polygon if the packing is
done according to a grid. The polygons deviate from
being perfect squares by having several inclusions and
exclusions; these force a small polygon to have certain
interactions with the neighboring small polygon if a
packing of n2 small polygons is to be achieved. Each
polygon will have a number of allowable vertical shifts,
which among other things, represent a series of truth
values. The construction is very carefully constructed
such that the position of a small polygon relative to
its neighbor will encode its position in the grid pack-
ing, its truth value, as well as the truth value of two
neighboring small polygons. Given that this relative
positioning encodes all this information, inclusions
can be made to allow or deny shifts encoding con-
figurations that are consistent with the given planar
circuit on a grid.

[1] Erik D. Demaine, Joseph S. B. Mitchell, and Joseph
O’Rourke. The open problems project. http://cs.

smith.edu/~orourke/TOPP/Welcome.html.
[2] Dania El-Khechen, Muriel Dulieu, John Iacono, and

Nikolaj van Omme. Packing 22 unit squares into grid
polygons is NP-complete”. In CCCG, pages 33–36,
2009.

[3] Robert J. Fowler, Mike Paterson, and Steven L. Tani-
moto. Optimal packing and covering in the plane are
NP-complete. Inf. Process. Lett., 12(3):133–137, 1981.



Figure 1: An illustration of our reduction. The 9 colored small polygons are all identical, and the inner
white-black boundary defines the large polygon. Note that for ease of viewing the whitespace and other visual
elements have been exaggerated dramatically, and certain elements of the construction have been simplified.
The inclusions and exclusions on the large polygon form an arithmetic progression. To the lower left is a
closeup of what we call the nailer ; this forces a unique positioning depending on a small polygon’s location in
the grid. To the bottom-right is a closeup of a horizontal protrusion and inclusion; these are designed so that
the notch occupied is a unique function of the position. By removing some notches, some configurations can
be allowed or forbidden. The vertical groups of three are meant to illustrate states (such as true and false).
For reasons described in the full paper, 64 such vertical groups are needed instead of the three illustrated.
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Abstract. We consider the situation where one is given a set S of

points in the plane and a collection D of unit disks embedded in
the plane. We show that finding a minimum cardinality subset of D
such that any path between any two points in S is intersected by at

least one disk is NP-complete. This settles an open problem raised in
[1]. Using a similar reduction, we show that the Multiterminal Cut

Problem introduced in [4] remains NP-complete when restricted to

unit disk graphs.

1. Introduction and Main Result

In this note we show that the Point Set Isolation Problem defined below
in Problem 1 is NP-complete. This problem was introduced in [1] where
a polynomial-time constant-factor approximation algorithm was presented,
but the problem complexity was stated as an open problem. As a moti-
vation for studying this problem, its relevance to trap coverage in sensor
networks is mentioned, where one wants to detect certain spacial transi-
tions among the observed objects (see for example [3]).

In order to show NP-completeness of the Point Set Isolation Problem we
are going to reduce the Planar Subdivision Problem defined in Problem 2
to it. This problem is NP-complete by Proposition 3.

Problem 1 (Point Set Isolation Problem [1]). Given a set S of k points in
the plane and a collection D of n unit disks embedded in the plane, no disk
containing a point of S. The goal is to find a minimum cardinality subset
D′ ⊆ D, s.t. every path between two points in S is intersected by at least
one disk in D′.

Problem 2 (Planar Subdivision Problem). Given a simple unweighted pla-
nar graph G = (V,E) embedded in the plane and a set S of k points properly
contained in the faces of G with no face containing more than one point,
find the minimum cardinality set E′ ⊆ E such that in the embedding of the
reduced graph G′ = (V,E′), no two points are contained in the same face.

∗Research supported by NSF grant 1017539



Proposition 3. The Planar Subdivision Problem is NP-complete if k is
not fixed.

Theorem 4. The Point Set Isolation Problem is NP-complete if k is not
fixed.

Problem 5 (Multiterminal Cut Problem [4]). Given a simple graph G =
(V,E) and a set S ⊆ V of k terminals, the task is to find the minimum
cardinality set E′ ⊆ E such that in G′ = (V,E\E′) there is no path between
any two nodes in S.

Theorem 6. The Multiterminal Cut Problem remains NP-complete on unit
disk graphs if k is not fixed.

For a high level description of the proof of Theorem 4, we reduce an
instance I2 = (G2, S2) of the Planar Subdivision Problem in polynomial
time to an instance I1 = (D, S1) of the Point Set Isolation Problem. We do
this by first transforming the embedding of G2 to an ”equivalent” straight
line embedding on an integer grid. Each embedded edge then gets replaced
by an edge gadget which consists of a path of unit disks constructed in
such a way that every edge gadget contains the same amount of unit disks,
regardless of the length of the embedded edge. The dimensions of each
edge gadget is chosen such that no two unit disks of different edge gadgets
intersect. Furthermore, we replace each embedded vertex v by a vertex
gadget which consists of a cycle of unit disks which is circularly arranged
around v. Each edge gadget of edges incident to v will intersect a small
number of disks contained in the vertex gadget. The main task of the
reduction is to choose the radius of the disks and the dimension of the
gadgets such that every edge gadget consists of the same amount of disks
and so that non-incident edge gadgets are disjoint. For the proof of Theorem
6 similar gadgets are used.
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1 Introduction

We consider the smallest superpolyomino problem:
given a set of colored polyominoes, find the smallest
superpolyomino containing each input polyomino as a
subpolyomino. Alternatively, find an overlapping ar-
rangement of the polyominoes such that all overlapping
cells have matching colors and the union of the poly-
ominoes is as small as possible.

In one dimension, this problem is equivalent to
the smallest superstring problem and admits a greedy
constant-factor approximation algorithm [1]. Charikar
et al. [2] use this to develop a straightforward O(log3 n)-
approximation algorithm for finding the smallest
context-free grammar encoding a string.

One motivation for investigating the smallest su-
perpolyomino problem is the possibility of extending
the Charikar algorithm to higher dimensions, yielding
good grammar-based image and shape compression al-
gorithms. Here we show that such an extension is un-
likely to exist by proving that the smallest superpoly-
omino problem is NP-hard to approximate within a
O(n1/3−ε)-factor for any ε > 0 by a reduction from
chromatic number.

2 Definitions

A polyomino P = (S,L) is defined by a connected set of
points S on the square lattice (called cells) containing
(0, 0), and a coloring of the cells, e.g. cell (3, 1) is red,
cell (3, 2) is gray, etc. We denote the color of the cell
(x, y) as P (x, y), and |P | denotes the number of cells in
P , i.e. the size of P . Two polyominoes Pu = (Su, Lu)
and Pv = (Sv, Lv) at some translation (δx, δy) are com-
patible if for each (x, y), either Pv(x, y) or Pu(x, y) is
empty or Pv(x, y) = Pu(x+δx, y+δy). Similarly, a poly-
omino P = (S,L) is a superpolyomino of P ′ = (S′, L′)
if there exists a translation (δx, δy) such that for each
(x, y), either (x, y) 6∈ S′ or P ′(x+ δx, y + δy) = P (x, y),
i.e. there is a translation of P ′ such that P ′ is compat-
ible with P and lies entirely in P .

∗A full version of this paper is available at http://arxiv.org/
abs/1210.3877.
†Department of Computer Science, Tufts University. Re-

search supported in part by NSF grants CCF-0830734 and CBET-
0941538.

3 Reduction

Given a graph G = (V,E), each vertex v ∈ V is con-
verted into a polyomino Pv = (Sv, Lv) that encodes v
and the neighbors of v in G (see Figure 1). Each Pv is a
rectangular 2|V |× |V | polyomino with up to |V |−1 sin-
gle squares removed and lower-left corner at (0, 0). The
four corners of all Pv have a common set of four col-
ors: green, blue, purple, and orange. Cells at locations
{(2i + 1, 1) | 0 ≤ i < |V |} are colored black if vi = v,
red if (v, vi) ∈ E, or are empty locations if vi is not v
or a neighbor of v. All remaining cells have a common
gray color.

v1 v7

v2 v5

v3

v4 v6

P1 P2 P3 P4

P5 P6 P7

Figure 1: An example of the set of polyominoes gener-
ated from an input graph by the reduction.

Consider how two polyominoes Pu and Pv can over-
lap, depending upon the relationship of u and v. Be-
cause of the four distinct corner colors, Pu and Pv can
only overlap when these four locations in Pv are trans-
lated to the same locations in Pu. In this translation,
the cells at location (2i + 1, 1) in Pu and Pv are com-
patible exactly when (u, v) 6∈ E, i.e. u and v are not
neighbors. All other cells are colored gray and thus
compatible.

The superpolyomino formed by a pair of compatible
Pu and Pv in this translation has the common set of
four colored corner cells and many gray cells, and has
two black cells and a number of red cells corresponding
to the combined neighborhoods of u and v. Then by
induction, any set of polyominoes can overlap if and
only if they form an independent set. Moreover, if they
overlap, they overlap using a set of translations in which

http://arxiv.org/abs/1210.3877
http://arxiv.org/abs/1210.3877


the four corners of all polyominoes are placed at four
common locations.

Because the polyominoes can only overlap in this con-
strained way, any superpolyomino of the polyominoes
{Pv | v ∈ V } consists of a number of decks of superim-
posed polyominoes corresponding to independent sets
of vertices in G arranged disjointly to form a single con-
nected polyomino (see Figure 2).

Figure 2: An example of a corresponding 4-deck super-
polyomino and 4-colored graph.

Recall that each Pv is a 2|V | × |V | rectangle with |V |
cells colored black, red, or are not present. The size of
Pv is then between 2|V |2−|V |+ 1 and 2|V |2 depending
upon the number of neighbors of v, and each deck of
polyominoes also has size in this range.

Lemma 3.1 For a graph G = (V,E), there exists a
superpolyomino of size at most 2k|V |2 for polyominoes
{Pv | v ∈ V } if and only if the vertices of V can be
k-colored.

Proof First, consider extreme sizes of superpolyomi-
noes consisting of k and k − 1 decks. For any V and k
with 1 ≤ k ≤ |V |, (k − 1)(2|V |2) = 2k|V |2 − 2|V |2 <
2k|V |2 − k|V | = k(2|V |2 − |V |), i.e. the size of any su-
perpolyomino of k − 1 decks is smaller than the size of
any superpolyomino of k decks.

We now prove both implications of the lemma. First,
assume the superpolyomino of size at most 2k|V |2 ex-
ists. Then the superpolyomino must consist of at most
k decks. Each deck is the superposition of a set of poly-
ominoes forming an independent set, so G can be k-
colored.

Next, assume thatG can be k-colored. Then the poly-
ominoes {Pv | v ∈ V } can be translated to form k decks,
one for each color, each with size at most 2|V |2. Placing
these decks adjacent to each other yields a superpoly-
omino of size at most 2k|V |2. �

Note that only |V | cells of each Pv are distinct and
depend on v, while the other 2|V |2 − |V | are held con-
stant. The extra cells are needed for the first inequality
in Lemma 3.1, and they effectively “drown out” the dif-
ference in sizes of various decks due to the number of
cells not present in each deck.

Theorem 3.2 The smallest superpolyomino problem is
NP-hard to approximate within a factor of O(n1/3−ε)
for any ε > 0.

Proof Consider the smallest superpolyomino problem
for the polyominoes generated from a graph G = (V,E)
with chromatic number k. There are |V | of these poly-
ominoes, each of size Θ(|V |2), so the polyominoes have
total size n = Θ(|V |3). By Lemma 3.1, a superpoly-
omino of size between (2|V |2 − |V |)k′ and 2|V |2k′ ex-
ists if and only if there exists a k′-coloring of G. Then
by Zuckerman [3], finding a superpolyomino such that
(2|V |2 − |V |)k′/(2|V |2)k = O(|V |1−ε) = Θ(n1/3−ε) is
NP-hard.

As seen in Figure 3, the result also holds when con-
strainted to sets of polyominoes using at most two colors
by converting each cell into a unique 8× 8 macro-cell.

⇒

Figure 3: Converting a reduction polyomino (left) to a
two-color reduction polyomino (right).

We mention (but do not prove here) that the problem
constrained to single-color sets of polyominoes is NP-
hard by a reduction from set cover. An example of a
polyomino set used in the reduction is seen in Figure 4.

Figure 4: The set of polyominoes produced from the
reduction from minimum set cover to smallest super-
polyomino for the set {{1, 2}, {1, 4}, {2, 3, 4}, {2, 4}}.
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A Characterization Theorem and an Algorithm for a Convex Hull Problem
Bahman Kalantari

Extended Abstract. Given a set S = {v1, . . . , vn} ⊂ Rm and a point p ∈ Rm, testing if p ∈ conv(S), the
convex hull of S, is a fundamental problem in computational geometry and linear programming. Denoting
the Euclidean distance between u,w ∈ Rm by d(u, v) =

√∑m
i=1(ui − wi)2, first we prove a distance duality:

Distance Duality
Precisely one of the two conditions is satisfied:
(i): For each p′ ∈ conv(S) \ {p}, there exists vj ∈ S such that d(p′, vj) ≥ d(p, vj);
(ii): There exists p′ ∈ conv(S) such that d(p′, vi) < d(p, vi), for all i = 1, . . . , n.

Condition (i) is valid if and only if p ∈ conv(S), and condition (ii) if and only if p 6∈ conv(S). Utilizing
this duality, we describe a simple fully polynomial time approximation scheme, called the Triangle Algorithm:

Triangle Algorithm (S = {v1, . . . , vn}, p)
• Step 1. Given p′ ∈ conv(S) \ {p}, check if there exists vj ∈ S such that d(p′, vj) ≥ d(p, vj).

If no such vj exists, stop, p 6∈ conv(S).

• Step 2. Otherwise, on the line segment joining p′ to vj compute the point nearest to p.
Denote this by p′′. Replace p′ with p′′, go to Step 1.

We refer to p′ in Step 1 as iterate and vj as pivot point. Given ε ∈ (0, 1), the Triangle Algorithm in at
most 48mnε−2 = O(mnε−2) arithmetic operations computes a point p′ ∈ conv(S) such that either

d(p′, p) ≤ εd(p, vj), for some j; or (1)

d(p′, vi) < d(p, vi), ∀i = 1, . . . , n. (2)

We refer to the point p′ satisfying (1) as an ε-approximate solution. Clearly, approximation to a prescribed
absolute error is also possible. We refer to a point p′ satisfying (2) as witness. This condition holds if and
only if p 6∈ conv(S). This is because in this case we can prove the Voronoi cell of p′ with respect to the two
point set {p, p′} contains conv(S) (see Figure 1). Equivalently, the orthogonal bisector of the line segment
pp′ separates p from conv(S).

v1
v2

v3

v4

v5

p

p′

µ

l

v1
v2

v3

v4

v5
p

p′
µ

l

Figure 1: Example of cases where orthogonal bisector of pp′ does and does not separate p from conv(S).

The set Wp of all such witnesses is the intersection of conv(S) and the open balls, Bi = {x ∈ Rm :
d(x, vi) < d(p, vi)}, i = 1, . . . , n. Wp is a convex open set in the relative interior of conv(S) (see Figure 2).

By squaring the distances, d(p′, vj) ≥ d(p, vj) ⇐⇒ d(p′, 0)2 − d(p, 0)2 ≥ 2vTj (p′ − p). Thus Step 1 does
not require taking square-roots. Also, the computation of p′′ in Step 2 requires no square-root operations.

Given a point p′ ∈ conv(S) that is not a witness, having d(p, p′) as the current gap, the Triangle Algorithm
moves to a new point p′′ ∈ conv(S) where the new gap d(p, p′′) is reduced. We will prove that when
p ∈ conv(S), the number of iterations Kε, needed to get an approximate solution p′ satisfying (1) is bounded
above by 48ε−2 = O(ε−2). In the worst-case each iteration of Step 1 requires O(mn) arithmetic operations.

1



v1 v2

v3

p
v1 v2

v3

p

Figure 2: Examples of empty Wp (p ∈ conv(S)) and nonempty Wp (p 6∈ conv(S)), gray area.

However, it may also take only O(m) operations. The number of arithmetic operations in each iteration of
Step 2 is only O(m). Thus the complexity for computing an ε-approximate solution is O(mnε−2) arithmetic
operation. In particular, for fixed ε the complexity of the algorithm is only O(mn).

When p 6∈ conv(S), the Triangle Algorithm does not attempt to compute the closest point to p, say
p∗ ∈ conv(S), rather a separating hyperplane. However, by virtue of the fact that it finds a hyperplane
orthogonally bisecting the line pp′, it in the process computes an approximation to d(p, p∗) to within a factor
of two. More precisely, any witness p′ satisfies the inequality

.5d(p, p′) ≤ d(p, p∗) ≤ d(p, p′). (3)

Not only this approximation is useful for the convex hull problem, but for computing the distance between
two convex hulls, the polytope distance problem. As is well known the Minkowski difference of two convex
hulls is a polytope whose shortest vector has norm equal to the distance between the two polytopes.

The justification in the name of the algorithm lies in the fact that in each iteration the algorithm searches
for a triangle 4pp′vj where vj ∈ S, p′ ∈ conv(S)\{p}, such that d(p′, vj) ≥ d(p, vj). Given that such triangle
exists, it uses vj as a pivot point to “pull” the current iterate p′ closer to p to get a new iterate p′′ ∈ conv(S).

We also show how to solve general LP via the Triangle Algorithm and give a corresponding complexity
analysis. In particular, we prove a sensitivity theorem that converts LP feasibility with bounded domain
into a convex hull problem, then gives the necessary accuracy for computing an ε-approximate solution. We
also contrast the theoretical performance of the Triangle Algorithm with the sparse greedy approximation
(equivalent to Frank-Wolfe and Gilbert algorithms) for the minimization of a convex quadratic over a simplex,
a problem arising in machine learning, approximation theory, and statistics. The bibliography contains
sample references from the main article.
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Approximation Algorithms for Outlier Removal in Convex Hulls

Michael Biro ∗ Justine Bonanno∗ Roozbeh Ebrahimi † Lynda Montgomery∗

Abstract

Given n points in R
2, we give approximation al-

gorithms to find a subset of k of the points that
has minimum-area or minimum-perimeter convex
hull. We give algorithms that, for each k, yield
a constant-factor approximation to the minimum-
perimeter problem in linear time. We also show a 2-
approximation for the minimum-area problem in time
O(min(n3 log n, n2 log n+ kn(n− k)(n− k+ log k))),
as well as a heuristic for both problems that appears
to work well in practice.

1 Introduction

The problem of finding a subset of size k from a
point set of size n that has the least-perimeter con-
vex hull was considered in several papers, going back
to 1983, with results improving from the original
O(k2n log n+k5n) in Dobkin et al. [8] to O(n log n+
k3n) in Datta et al. [7] and Eppstein et al. [4]. Find-
ing the subset of k points with the minimum-area con-
vex hull was considered in Eppstein [3], and Eppstein
et al. [5], where they give O(kn3) and O(n2 log n +
k3n2) exact algorithms. These algorithms give the
exact solution, but their runtimes can be Ω(n4) and
Ω(n5), respectively for perimeter and area, and for
large k. Recently, for k = n− c, Atanassov, et al, [2]
gave exact O(n log n +

(

4c
2c

)

(3c)c+1n) algorithms for
both problems, however this still leaves a difficulty
of finding exact solutions for k sufficiently far from
n. We give a linear-time, constant-factor approxima-
tion to the minimum-perimeter problem, as well as
a 2-approximation algorithm for the minimum-area
problem that runs inO(min(n3 log n, n2 log n+kn(n−
k)(n − k + log k))) time. In addition, we describe a
heuristic for choosing the outliers that seems to work
well in practice.

∗Dept. Applied Mathematics and Statistics,

Stony Brook University, mbiro@ams.stonybrook.edu,

justine.bonanno@stonybrook.edu,

lynda.montgomery@stonybrook.edu
†Dept. Computer Science, Stony Brook University,
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2 Minimum-Perimeter Convex

Hull

We approximate the k-outlier minimum-perimeter
convex hull by approximating the shape of the convex
hull as either a rectangle or circle.

Lemma 2.1. Let P be a convex set in R
2. Then

the perimeter of P is at most a factor
√

2 away from

the perimeter of the minimum-perimeter axis-parallel

rectangle containing P .

Lemma 2.2. Let P be a convex set in R
2. Then the

perimeter of P is at most a factor of π
2

away from

the perimeter of the minimum disc enclosing P .

We now use recent results of Ahn et al. [1], that
finds the minimum-perimeter axis-parallel rectangle
in time O(n+ k3), and results of Har-Peled et al. [9]
that finds a (1 + ǫ)-approximation to the minimum
enclosing disk in time O(n+ n ·min( 1

kǫ2 log
2( 1ǫ ), k)).

Then we have,

Theorem 2.3. The k-outlier minimum-perimeter

convex hull problem can be approximated by a fac-

tor of
√

2 in time O(n+k3), and a factor of π
2
(1+ ǫ)

in time O(n+ n ·min( 1

kǫ2 log
2( 1ǫ ), k)).

These algorithms give constant-factor approxima-
tions to the minimum-perimeter problem for a vari-
ety of values of k. If k = O(n1/3) then the rect-
angle algorithm yields a

√

2 approximation in linear
time, and if k = Ω(n1/3), then the disk algorithm
gives a π

2
(1+ǫ)-approximation in linear time (for con-

stant values of ǫ). Therefore, for each value of k, we
give constant-factor approximations to the k-outlier
minimum-perimeter problem that run in linear time.

Corollary 2.4. For each k, the k-outlier minimum-

perimeter convex hull problem can be approximated

by a constant factor in linear time.

3 Minimum-Area Convex Hull

We approximate the k-outlier minimum-area convex
hull problem by approximating the shape of the con-
vex hull as a rectangle with arbitrary orientation.



Lemma 3.1. Let P be a convex set in R
2. Then the

area of P is at most a factor of 2 away from the area

of the minimum-area rectangle enclosing P .

Proof. Take the longest diagonal D of P , and con-
struct a minimal enclosing rectangle R with two sides
parallel to D. Take R along with the D and the two
points defining the perpendicular edges to D of R.
The area of P is at least the area of the two triangles
thus defined, and the two triangles take up exactly
half of R. Therefore, R has area at most twice the
area of P , and as the minimum-area rectangle has
area at most the area of R, it has area at most twice
the area of P . [10]

Using the idea in the above proof, we construct an
algorithm that checks every possible longest diagonal
D of the point set P , then computes the minimum-
area rectangle containing at least k points among all
such diagonals, in time O(n3 log n).

1. Examine every pair of points (p, q) and look at
the strip defined by lines perpendicular to pq

through p and q respectively. Find the points
of P that lie in the strip.

2. Sort the points in the strip by distance of pq, and
for every point in the strip find the corresponding
point so that the rectangle defined by the four
points contains k points of P .

3. Take the minimum-area rectangle among all
rectangles constructed.

We combine this with the recent result of Das et
al. [6], that finds a minimum-area rectangle in time
O(n2 log n+ kn(n− k)(n− k + log k)) time.

Theorem 3.2. The k-outlier minimum-area con-

vex hull problem can be 2-approximated in time

O(min(n3 log n, n2 log n+ kn(n− k)(n− k+ log k))).

This approximation is useful if k is Θ(n), so the
optimal solution in [3] runs in time Ω(n5), but not
n − c for constant c, as the optimal solution in [2]
runs in time exponential in c.

4 Heuristic

In this section, we describe a heuristic for the
minimum-area convex hull problem. It runs in time
O(n(n − k) log n) in the worst case, and while there
are cases where it gives arbitrarily bad approxima-
tions, in practice it has yielded good results.

1. Find the diameter d of the points, say between
points a and b. Define a lune L by intersecting
disks of radius d centered at a and b, respectively.

2. Let O be the midpoint of ab. Divide L evenly
into 4 equal sectors around O and associate the
points with their respective sector. Sort the
points with respect to distance from O.

3. If any sector contains fewer than n − k points,
remove all points in that sector.

4. Remove points in order of decreasing distance
from O until either n− k points are removed, or
one of a, b is removed. If the latter, begin again.

5 Conclusion

For future work, we would like to find a PTAS for
minimum-perimeter that runs in linear or near-linear
time, as well as improve the running time of the ap-
proximation for minimum-area convex hulls.
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The Range 1 Query (R1Q) Problem

Rezaul Chowdhury∗, Pramod Ganapathi†, Yuan Tang‡

Abstract: Given a bit array of size n and two indices i and j, find efficiently
if there is a 1 in the subarray [i, j]. We call this problem the ”Range 1 Query”
(R1Q) problem. The problem can be easily generalized to higher dimensions.
We give exact and approximation algorithms to solve the problem in 1D and
higher dimensions. We can also answer queries for right triangles, isosceles
triangles and in general, polygons with certain constraints. The applications
include the Pochoir stencil compiler [1], where we have to answer octagonal
queries to select optimized code clones.

Exact Algorithm: The 1D algorithm is as follows. We divide the input array
into blocks of size 2p for different values of p greater than some threshold. We
preprocess these blocks so that any query of length exactly 2p that crosses a
block boundary or lies completely inside a block can be answered in constant
time. To answer intra-block queries, we use Four Russians trick.

To answer the query R1Q(i, j), we find at most two possibly overlapping blocks
of size 2k <= j − i + 1 (for some positive integer k) that completely cover the
range, and then compute the answer from the two queries. For input size of n
bits, preprocessing takes o(n) bits of space and O(n) time and query execution
takes O(1) time. The algorithm can be extended to higher dimensions.

Approximation Algorithm: As in the exact algorithm, we preprocess the
blocks of size 2p for different values of p, and this time we use Cormode-
Muthukrishnan’s Count Min (CM) sketch data structure [2] to store the pre-
processed data. We create separate CM sketches for different block sizes so that
queries of different sizes can be answered approximately in sublinear space and
constant time.

By setting the value of the error rate, the space usage of the approximation
algorithm can be made arbitrarily small compared to the exact algorithm. The
query execution is similar to the exact algorithm.

Other Shapes: We answer right triangular queries as follows. We preprocess
all the right triangles with horizontal base in eight orientations, with either base

∗Stony Brook University, U.S.A.; rezaul@cs.stonybrook.edu
†Stony Brook University, U.S.A.; pganapathi@cs.stonybrook.edu
‡Fudan University, China; yuantang@fudan.edu.cn
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length or height a power of two. Now we split a general horizontal base right
triangle into two overlapping right triangles with base length or height a power
of two, and possibly a rectangle. We find the answers to these triangles and
rectangle using the preprocessed data and hence answer the query triangle.

We answer polygonal queries as follows. The polygon is split into a collection
of right triangles and rectangles that completely lie inside the given polygon
and completely cover it, and each of which can be answered using preprocessed
data. The results of these right triangular and rectangular queries are combined
to answer the input polygonal query.
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Group Following in Monotonic Tracking Regions ∗

Christopher Vo Jyh-Ming Lien †

Abstract
For a 2-d pursuit-evasion game called group follow-

ing, we study a data structure called monotonic tracking
regions (mtr). An mtr has a support path so that the
points along the path can collectively see every point
in the mtr. An mtr can be considered as a general-
ization of a star-shaped region. Using an mtr, we can
plan online the path of a bounded-speed camera track-
ing a group of n agents to a planning horizon h in time
O(hn2).

1 Introduction
Monotonic tracking regions (mtrs) [Vo and Lien

2010] are a data structure to guide a single camera fol-
lowing multiple coherent targets in a 2D workspace. In-
tuitively, in an mtr, the camera can maintain visibility
of targets by moving along a trajectory. This mtr data
structure allows us to generate the camera’s motion on-
line by solving a linear programming problem.

We assume that the camera C has a bounded linear
velocity vmaxC . The exact configuration of this view at
time t, denoted as VC(t), is defined by the camera’s view
direction θC(t) and location xC(t). The position of the
camera is simply: xC(t + 4t) = xC(t) + 4t · vC(t) ,
where vC(t) is the camera’s velocity at time t. The
target T comprises a group of coherent non-adversarial
members, whose trajectories are not known in advance.
We also assume that the size of T and T ’s maximum
(linear) velocity vmaxT are known (by the camera). The
position of xτ (t) a target τ ∈ T at time t is known only
if τ is visible by the camera. We attempt to maximize
the number of visible targets:

arg max
vC (t)

(∑
t

card({T ′ ⊂ T | XT ′ (t) ⊂ VC(t)})
)

,

where card(X ) is the number of elements in X .

2 Monotonic Tracking Regions (MTRs)
We let a 2D regionMπ be a generalized cylinder de-

fined w.r.t a supporting path π. We say π is a supporting
path of Mπ if every point x ∈ Mπ can see a subset of
π. Consequently, the visibility of π spans Mπ.

Definition 2.1. Mπ ⊂ F is a region supported by a
path π if Mπ = {x | ∃y ∈ π s.t. xy ⊂ F}, where xy is
an open line segment between x and y, and F is the free
space (i.e., the area without obstacles).

Furthermore, we define the subset of π visible by x
as: Vπ(x) = {y ∈ π | xy ⊂ F} . Finally, we define mtr.

∗This work is supported in part by NSF IIS-096053, NSF
EFRI-1240459, AFOSR FA9550-12-1-0238.
†Both authors are with Department of Computer Science,

George Mason University, Fairfax, VA 22030 USA.

Definition 2.2. A regionMπ ∈ F is an mtr supported
by π if |Vπ(x)| = 1, ∀x ∈ Mπ, where |X | is the number
of connect components in a set X .

Because each x ∈ Mπ can see only an interval of π,
we can compactly represent the visible region (called
visibility interval) of x as a tuple Vπ(x) = (s, t), 0 ≤ s ≤
t ≤ 1, if we parameterize π from 0 to 1.

2.1 Follow a single target

Let xτ (t) be the position of the target τ at time t.
Since we know the maximum speed of the target, we
can estimate the positions xτ (t +4t) in the next time
step, i.e., the intersection of F and a disc with radius
4t · vmaxT . In order to keep the target in the view, the
camera’s next position xC(t+4t) must be:

xC(t+4t) ∈ Vπ (xτ (t+4t)) =
⋂

x∈xτ (t+4t)

Vπ(x) .

Let Ii = Vπ(xτ (t + i · 4t)) = (si, ti). Here i is an
integer from 1 to h, where h is the user-defined time
horizon. Both si and ti are parameters on the parame-
terized path π. In order to follow the target for h steps,
the planner needs find a sequence of parameterized cam-
era locations xi from a sequence of intervals such that
every point xi is in its corresponding interval Ii. In ad-
dition, one may desire to minimize the distance travelled
by the camera. Taking all these into consideration, this
problem can be formulated as an h-dimensional linear
programming (LP) problem:

min xh − x1
s.t. si ≤ xi ≤ ti,∀i ∈ {1, 2, · · · , h}

We call the above LP problem the canonical following
problem. Solving a canonical following problem can be
done efficiently since h is usually small (≤ 20).

2.2 Follow multiple targets

Now, we will extend the canonical following problem
to handle multiple targets T . Let xT (t) be the current
positions of the targets T . Similar to the case of a single
target, we estimate the positions xT (t+4t) in the next
time step. In order to see a least one target, the camera
must move so that

xC(t+4t) ∈
⋃
τ∈T
Vπ(xτ (t+4t)) =

⋃
τ∈T

 ⋂
x∈xτ (t+4t)

Vπ(x)

 .

To simplify our notation, let Ii =
⋃
τ∈T Vπ(xτ (t) + i ·

4t) = (si, ti). By placing the camera in Ii, we can
guarantee that at least one target is visible. However,
our goal is to maximize the number of visible targets,
at least over the planning horizon. To do so, we seg-
ment Ii into subintervals Iji , each of which can see nji



si ti
Vπ(t0)

Vπ(t1)

Vπ(t2)

Vπ(t3)

Vπ(t4)

(a)

si ti
1 2 3 4 3 2 1 2 1

(b)

Figure 1: (a) The interval Ii = (si, ti) = ∪τ∈TVπ(xτ ).
(b) The interval Ii is segmented into 9 subintervals, each
of which is a set of points in π that can see the same
number of targets, which is shown below each interval.

targets. Fig. 1(a) shows an example of Ii defined as
the union the all the visibility intervals Vπ(xτ ) of the
targets τ . Note that Ii may contain multiple connected
components. Fig. 1(b) shows the subdivision of Ii (i.e.,

subintervals Iji ) bounded by the end points of Vπ(xτ ).

Each Iji is associated with the number of visible targets

nji . When the velocity of the camera is unlimited, then

the optimal strategy is to pick the subinterval Iji with

the largest nji in each Ii, i.e., Ii is shrunk to Iji . Thus,
instead of solving the the following problem using Ii,
the subintervals Iji will be used. See Fig. 2.

From Fig. 2, one can also see that the distance that
the camera has to travel from x2 to x3 is quite long,
thus the camera will need to move very fast to main-
tain the maximum visibility. When the camera speed
is bounded, this may not always be possible. There-
fore, we need a way to select a subinterval from each
Ii so that the total number of visible targets is max-
imized while still maintaining the constraint that the
minimum distance between Iji ⊂ Ii and Iki+1 ⊂ Ii+1 is
smaller than 4t · vmaxT . More specifically, we would like
to find a solution to the following problem:

arg max
{ji}

(
h∑
i=1

njii

)
s.t. dist(Ijii , I

ji+1

i+1 ) ≤ 4t · vmaxT , ∀i ,

where ji is the index of the ji-th subinterval in interval
Ii, and dist(x, y) is the closest distance between two
subintervals x and y. Although, at the first glance, this
problem seems to be another LP problem, fortunately,
Lemma 2.3 shows that the optimal subintervals can be
found in O(hn2) time, where n is the number of targets
and h is the time horizon.

s1

s2

s3

s4 t4
t3

t2t1

πx1 x2 x3 x4

Figure 2: Make predictions in subintervals with maxi-
mum targets visibility for the next h = 4 future steps.

Lemma 2.3. Finding all Ijii will take O(hn2) time for
n targets and h planning time horizon.

Proof. The main idea is to construct a directed graph
from these subintervals and the current position of the
camera, and show that this graph must be a DAG with
O(hn) vertices and O(hn2) edges. Then the problem
of find a sequence of optimal subintervals become the
longest path search problem in the DAG, which can be
solved in time linear to the size of the graph.

To construct such a graph, we first define the idea of
reachability. Given two subintervals u and v from two
consecutive intervals, the reachable interval r(u, v) ∈ v
is a set of points in v that the camera can reach from
u in one step without violating the speed constraint. If
r(u, v) is not empty, then we say v is reachable from u.
Note that the reachability can be nested, i.e., given three
subintervals u, v, and w, we say that w is reachable from
u if r(u,w) = r(r(u, v), w) is not empty. In the graph
that we will construct, we ensure that every node in the
graph is reachable from the current position xC of the
camera. Finally, we say that a subinterval v is reachable
by the camera if r(xC , v) is not empty.

Specifically, we let the current position xC of the cam-
era be the source of the graph and let the subinter-
vals be the rest of the nodes in the graph. The source
are then connected to the subintervals in I1 that are
reachable by the camera. The each reachable subinter-
val in I1 are connected to the subintervals in I2 that
are reachable by the camera. The process repeats until
the reachable intervals in Ih are connected by those in
Ih−1. Note that since we only need to pick one subin-
terval from each interval, the subintervals within each
interval are not connected. Finally, we let the edge
weight be the number of visible targets in the desti-
nation node. The graph constructed this way must be
a DAG since there is no back edge. Any path the con-
nects the source to a sink will contain a sequence of
valid subintervals. Thus, finding the maximize number
of targets visible from these subintervals is equivalent
to finding the longest path in the DAG, which can be
solved in linear time using topological sort. Since each
interval will have Θ(2n) subintervals and two consecu-
tive intervals will have 4n2 edges, this DAG has O(hn)
vertices and O(hn2) edges.
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Guarding simple polygons with semi-open edge guards ∗

Asish Mukhopadhyay † Chris Drouillard † Godfried Toussaint ‡

1 Introduction

Let bd(P ) denote the boundary of a simple polygon
P . Points p and q of P are mutually visible if segment
pq lies entirely inside P . This notion of visibility gave
birth to an extensive literature on art-gallery problems
[3], concerned with guarding the floor of a polygonal
art-gallery. Chvatal [2] showed that bn/3c point guards
are always sufficient and sometimes necessary. Allowing
guards to move on an edge gives rise to the class of
edge guard problems. An edge guard is closed (open)
if the end-points of the edge are included (excluded),
semi-open if only one end-point is included. Shermer
[5] established an upper bound of b3n/10c + 1 on the
number of closed edge guards needed, while Toussaint [3]
showed that bn/4c guards are sometimes necessary. A
guard edge is one that guards all of P . In [6], Toth et al.
have shown that a non star-shaped simple polygon has
at most one open guard edge. Park et al. [4] showed that
such a polygon can have at most 3 closed guard edges.

Thus it is interesting to explore the scenario in which
the edge guards are semi-open. A semi-open edge guard
includes exactly one of the end-points. For clarity and
focus, in this paper the included end-point is always the
end that is met first in a clockwise traversal of P . We
show that a non star-shaped polygon has at most 3 semi-
open guard edges and propose an O(n) algorithm to find
all semi-open guard edges of a polygon.

2 Semi-open guard edges

Lemma 1 Let e = (u, v] be a semi-open edge of a polygon
P and p a point interior to it. Then p is visible from e iff
the set of common vertices of the paths p ; u and p ; v
is either {p} or {p, v}.

Figure 1 shows that a non star-shaped polygon can have 3
semi-open guard edges. In fact, the following result holds.

Theorem 1 Every non star-shaped simple polygon has
at most three semi-open guard edges.

∗The full content of this abstract together with the proofs of all
the results will be published in the Proceedings of the Third Inter-
national Conference on Digital Information Processing and Com-
munications, Islamic Azad University (IAU), Dubai, United Arab
Emirates, Jan. 30, 2013 - Feb. 1, 2013.
†School of Computer Science, University of Windsor,
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g1

g2
g3

Figure 1: A non-starshaped polygon that has three semi-
open guard edges : g1, g2 and g3

3 Characterizing semi-open guard
edges

Let r be a reflex vertex of P . With respect to a
counter-clockwise order of bd(P ), let r− be the vertex
that precedes r on bd(P ), and r+ the one that succeeds
it. Let p− be the intersection with bd(P ) of a ray shot

from r in the direction
→
r−r, while p+ is the intersection

with a ray shot from r in the direction
→
r+r.

r

r− r+

p−p+

Figure 2: Two subpolygons defined by a reflex vertex r

These rays define two polygons: a left polygon Cleft(r)
bounded by the chord rp− and the part of bd(P ) from
p− to r in the counter-clockwise order; and a right
polygon Cright(r) bounded by the chord rp+ and the
part of bd(P ) from r to p+ in the counter-clockwise order.

The left (respectively, right) kernel, Kleft(P ) (respec-
tively, Kright(P )) is the intersection of all the left (respec-
tively, right) polygons Cleft(r) (respectively, Cright(r)),
while the kernel of P is the intersection of Kleft(P ) and
Kright(P ).

Fact 1 The kernels Kleft(P ) and Kright(P ) are both
convex.

Toth et al. [6] showed that the left and right kernels can
be used to define left-kernel and right-kernel decomposi-



tions of int(P ). These decompositions were used to prove
the following theorem.

Theorem 2 A open edge e = (a, b) of a simple polygon
P is a guard edge iff e intersects both the left and right
kernels of P .

Theorem 3 A semi-open edge e = (a, b] is a guard edge
iff e has a non-empty intersection with Cleft(r)∩Cright(r)
for every reflex vertex, r.

4 Algorithm

In [1], Bhattacharya et al. proposed a linear time
algorithm for computing a shortest internal line seg-
ment l from which a polygon P is weakly internally
visible. Central to their algorithm is the notion of a
non-redundant component. Both Cleft(r) and Cright(r),
as defined in this paper, are components of P . A com-
ponent is non-redundant if it does not properly contain
any other component. They show how to compute all
non-redundant components in linear time.

Let the ends of each non-redundant component that lie
on bd(P ) be marked blue and red in counter-clockwise
order in an initial counter-clockwise traversal of bd(P ).

To calculate the number of non-redundant components
that an edge intersects, we obtain this value for the
previous edge, subtract the number of red marks it
contains, and then add the number of blue marks the
current edge contains. To initialize the process, we
find the number of non-redundant components for the
first edge. This requires an extra pass over bd(P ) with
a counter initialized to 0; every red mark passed over
decrements the counter, and every blue mark increments
it. This finds all closed guard edges. To narrow down
to just semi-open guard edges, we remove all edges with
both end points reflex.

At the end of the second round, we declare those edges e
as semi-open guard edges whose intersection count edge-
Count(e) is equal to the number of non-redundant com-
ponents.

5 Polygons with holes

A polygon P with holes can have guard edges that lie
on the outer boundary or on the boundaries of the holes.
Park et al. [4] have shown that to establish upper bounds
it is enough to consider polygons with only one convex
hole, indeed just one triangular hole. It is quite obvi-
ous that no semi-open edge of this triangular hole can be
an guard edge as it cannot see all the points on its own
boundary. As for guard edges on the outer boundary, the
following theorem of [4] for closed guard edges carries over
when the guard edges are semi-open.

e1

e2

e4

e3

Figure 3: Semi open edges e1 − e4 guard this polygon

Theorem 4 For a polygon P with a convex hole H, the
number of guard edges is at most 3.

6 Conclusion

By considering semi-open guard edges, we are led to
some interesting conclusions. The upper bound on the
number of semi-open guard edges is the same as for
closed guard edges. A more careful characterization is
needed for a semi-open guard edge as one or both the
kernels can be empty. It would also be interesting to
find tight upper and lower bounds on the number of
semi-open edge guards needed to guard a polygon P .
The classes of polygons in Figures 3, 4 seem to suggest a
lower bound of 2n/7 semi-open edge guards.

e1

e2

e3

e4

e5

e6

Figure 4: Semi open edges e1 − e6 guard this polygon
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[2] V. Chvátal. A combinatorial theorem in plane geometry.
Journal of Combintorial Theory, Series B, 18(1):38–41,
1975.

[3] J. O’Rourke. Art Gallery Theorems and Algorithms, vol-
ume 31. Oxford University Press, 1987.

[4] J.-H. Park, S. Y. Shin, K.-Y. Chwa, and T. C. Woo. On
the number of guard edges of a polygon. Discrete & Com-
putational Geometry, 10:447–462, 1993.

[5] T. Shermer. Recent results in art galleries. Proceeedings
of IEEE, 80:1384–1399, 1992.

[6] C. Toth, G. Toussaint, and A. Winslow. Open guard edges
and edge guards in simple polygons. In Canadian Confer-
ence on Computational Geometry, Toronto, ON, Canada,
Aug 10-12, 2011.



Fence patrolling by mobile agents
with distinct speeds
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This is based on a paper with the same title [2] to be presented at ISAAC 2012.

Fence patrolling and the partition-based strategy

Suppose we want to patrol a fence (line segment) using k mobile agents with given
speeds v1, . . . , vk so that every point on the fence is visited by an agent at least once
in every unit time period, indefinitely.

Czyzowicz et al. [1] conjectured that the maximum length of the fence that can be
patrolled is (v1+ · · ·+ vk)/2, which is achieved by the simple partition-based strategy
where each agent i keeps moving back and forth in a sub-segment of length vi/2.

The partition-based strategy is not always optimal

We [2] disproved the conjecture by the counterexample in the figure below, where
six agents with speeds 1, 1, 1, 1, 7/3, 1/2 patrol a fence of length 7/2, beating the
partition-based strategy attaining 41/12. In the figure, time flows upwards and the
agents (four in the left diagram, one in the middle, one in the right) move along
the solid lines. The regions that have been visited in the past unit time are shaded.
Observe that the regions together cover the whole strip. The dotted lines delimit the
regions already covered in previous diagram(s).

Theorem 1 There is a setting of six agents’ speeds for which the partition-based
strategy does not patrol the longest possible fence.

We also showed (see the full version) that the conjecture is true for three agents.

Theorem 4 For three agents, no strategy patrols a longer fence than the partition-
based strategy.

We do not know whether the conjecture is true for four or five agents.



A revised conjecture

An easy argument about the area of the shaded regions in the diagram shows that no
strategy can patrol a fence longer than v1+ · · ·+vk. This upper bound is twice as big
as what the partition-based strategy achieves. Our example in the figure outperforms
the partition-based strategy, but barely. Thus we ask if we can improve the upper
bound, so that a weakened version of Czyzowicz et al.’s conjecture holds:

Open problem. Is there a constant c < 1 such that for any k and any v1, . . . , vk,
the agents cannot patrol a fence longer than c(v1 + · · ·+ vk)?
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Abstract

We study shortest watchman paths in rectangular
arrangements of tangent unit-radius disks with disk
centers on a square grid lattice. Upper and lower
bounds are given for the length of shortest paths that
see all of the boundary of each disk.

1 Introduction

The watchman tour problem in polygons involves
finding a shortest tour so that every point in the
polygon is seen from at least one point along the
route [1, 2, 3]. We explore a related problem, which
we will call the Disk Grid Path Problem: Given a
rectangular arrangement of tangent unit-radius disks
with disk centers on a square grid lattice, find the
length of a shortest watchman path that sees all of
the boundary of each disk.
An equivalent statement of the Disk Grid Path

Problem is to find a shortest path with length
L(m,n) that travels through each of the m × n

(m ≤ n) “pockets” defined by the regions around
the disks (see Figure 1).

Lemma 1.1. A watchman path P with minimum

length L(m,n) is non-crossing.

Proof. If P crosses itself, we can reroute the crossing
segments locally so that the crossing is eliminated and
the path remains connected. This local change yields
a watchman path with strictly shorter length.

Figure 1: The 3× 4 disk grid with 20 shaded pockets

We will assume that for the Disk Grid Path

Problem, a given pocket is never visited twice. We

∗Dept. Applied Mathematics and Statistics, Stony Brook

University, mbiro@ams.stonybrook.edu, jiwerks@gmail.com

leave the resolution of this conjecture as an open
problem:

Conjecture 1.2 (The simplicity conjecture). An op-

timal solution to the Disk Grid Path Problem

never visits the same pocket twice.

Lemma 1.3. Given the simplicity conjecture, the

Disk Grid Path Problem is equivalent to finding

a Maximum-Turn Hamiltonian Path in an m×n

square grid graph.

Proof. By the simplicity conjecture, an optimal path
visits each vertex of the grid graph once. If the pocket
is visited on a turn, the vertex contributes a cost of
π/2 to the path, which is less than its cost of 2 if
the pocket was visited on a straight path. There are
always two terminating endpoints, so their contribu-
tions are equal and have cost 1. Thus, the shortest
path is exactly the one with the most turns.

Let T (m,n) be the number of turns in a
Maximum-Turn Hamiltonian Path of an m × n

square grid graph. Then, the length of the shortest
watchman path, L(m,n), is given by

L(m,n) =
π

2
T (m,n) + 2 + 2(nm− T (m,n)− 2)

= 2(nm− 1)− (2−
π

2
)T (m,n)

Therefore, in order to find the minimum-length
watchman path in disk grids, we bound the num-
ber of right-angle turns in a Hamiltonian path on an
m× n grid graph.

2 Results

We summarize our results in Table 1, of lower and
upper bounds on T (m,n), m ≤ n. This, in turn,
bounds L(m,n), via the above equation.

Conjecture 2.1. T (m,n) = nm−m for m,n even.

2.1 Upper Bounds

Examine two adjacent vertices in the grid graph.
There are three types of ways the vertices can be



m n lower bound upper bound
odd = m nm− n− 1 nm− n− 1
odd odd\even nm− n nm− n

even odd nm−m nm−m

even even nm−m nm− 4

Table 1: Combinatorial bounds for T (m,n)

visited. The equivalence classes up to symmetry are
in Figure 2 (square vertices are endpoints):

Type I Type II Type III

Figure 2: The types of vertex visitations

We divide the grid into horizontal strips of thick-
ness 2, then analyze which vertex types can occur.

Lemma 2.2. A horizontal strip of the grid graph that

contains a right-pointing Type I pair of vertices must

contain at least 1 additional non-turn vertex.

Proof. In all cases, either a non-turn vertex appears,
or a new Type I pair arises to the right side of the
old pair. A Type I pair cannot appear on the right
boundary, so there must be a non-turn vertex.

Corollary 2.3. If a strip contains a Type I pair then

it contains at least two non-turn vertices.

Proof. All Type I pairs either contain a non-turn ver-
tex already, or are symmetric so that there is a non-
turn both to the right and to the left of the pair.

Lemma 2.4. A strip with odd width must contain a

Type I or Type III pair of vertices. Specifically, such

a strip must contain at least 2 non-turn vertices.

Proof. Each of the Type II vertices involves exactly
two pairs of vertices so one pair must be left out.

Theorem 2.5. The upper bounds for T (m,n) in Ta-

ble 1 hold.

Proof. Due to space constraints, we only show the
case where m is odd and n is even. The remaining
cases are similar. Take the m×n grid graph and cut
it into n

2
, 2 × m strips. Since m is odd, by Lemma

2.4, there is a pair of non-turn vertices in each of the
strips, leaving at most 2m− 2 turns per strip. Thus,
there are at most n

2
(2m − 2) = nm − n turns in an

optimal path.

2.2 Lower Bounds

Watchman paths that achieve the number of turns in
Table 1 can be constructed (in general) via a spiraling
pattern. Figure 3 gives several examples.

Figure 3: Examples of watchman paths that achieve
the lower bounds given in Table 1

3 Conclusion

For future work, we would like to establish tight
bounds for the unresolved case when both m and n

are even. In addition, we would like to prove the sim-
plicity conjecture for paths and consider the closely
related Disk Grid Cycle Problem.
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Visibility Problems Concerning One-Sided Segments

Jonathan Lenchner∗ Eli Packer†

1 Introduction

We study a family of line segment visibility problems related to
classical art gallery problems which are motivated by monitoring
and surveillance requirements in commercial data centers. In tra-
ditional art gallery problems (see [4], [3] and [8]) an entire polyg-
onal region must be kept under surveillance. In our case it is a pre-
scribed collection of non-overlapping line segments in the interior
of the polygon which must be kept under surveillance. Moreover,
in many cases, it is required to see just one side of each segment.
Some of our early results attacking simple variants of this problem
were described in [2].

We consider distinct cases where the segments to be monitored
are either all vertical, all axis-aligned, or alternatively, all arbitrar-
ily aligned. Segments are assumed to be non-intersecting. Within
these cases we identify several variants of the basic visibility prob-
lem. Namely, if visibility must be from a given side, but that side is
specified by the problem poser, we say the problem is an instance
of the Poser’s Choice problem. If, on the other hand, the solver
has the choice of which side to monitor the segment from, we say
that it is an instance of the Solver’s Choice problem. Variants
of the Solver’s Choice problem have been studied by Czyzowicz
et al. [1], Toth [5]) and Urrutia [8]. A final variant is where the
solver must monitor the entire segment from both sides (a variant
also considered by Toth [5]).

In general we are interested in many aspects of these problems,
from solving particular instances exactly, or with some approxi-
mation guarantee, to achieving hardness results, or achieving so-
called combinatorial bounds, which say that for an arbitrary set of
n segments, to see all segments using one of the visibility models
may require some number, f(n), cameras. We consider both the-
oretical cameras with unlimited angular visibility and models of
real cameras with some degree of restricted angular visibility or
minimum/maximum depth of field restrictions. In [2] we showed
that it was NP-hard to solve the Poser’s Choice problem for the
case of all vertical segments and cameras with limited angle of vis-
ibility. This result can be extended to cameras of unlimited angle
of visibility in all the variants of the problem we have mentioned.

2 Results

In [2] we established hardness results for problems with either the-
oretical or realistic cameras. In this abstract we focus our discus-
sion on describing some of what we know about the polynomial
bounds for models involving theoretical cameras, i.e. cameras

∗IBM T.J. Watson Research Center
†IBM Haifa Research Lab

with unlimited angular visibility and no depth of field constraints.
These results are summarized in Figure 1.

Figure 1. A table summarizing what we know for the various problem variants.
The ’U’-prefixed number in each cell denotes the best-known combinatorial upper
bound, while the ’L’-prefixed number denotes the best-known lower bound. Results
with a following (C) are due to Czyzowicz et al. [1], those with a following (T) are due
to Toth [5] or [6], those with a following (U) are due to Urrutia [8], and the unlabeled
ones are due to us.

In all cases we are looking for the minimum number of cam-
eras that will suffice to see all segments in the worst case. All
results are modulo additive constants. Thus the theoretical upper
bounds are equal to the theoretical lower bounds. However, as the
reader will undoubtedly notice, in most cases, there is a gap in our
knowledge.

The results along the top row of Figure 1, for all vertical seg-
ments, were presented in [2], though at that time we did not make
the more subtle distinctions between the two types of Solver’s
Choice and two types of Poser’s Choice, so, in effect, only
columns two, four and five were considered. As one moves from
the top-left of this table to the bottom-right the problems become
consistently harder. Thus the number of cameras required to solve
cell (i, j) is less than or equal to the number of cameras needed to
solve either cell (i+1, j) or (i, j +1) ∀i, j. Moreover, the same is
true for any established upper and lower bounds. Our interest in
the subtly different variations, e.g. of Solver’s and Poser’s Choice,
is so that we can try to characterize precisely where the require-
ment for more cameras comes from as we move from the easier to
harder problems. The lower bounds in the table are established by
giving specific examples of segment configurations and arguing
that (at least) the given number of cameras are required. The up-
per bounds are obtained by systematically proving that the given
number of cameras can always be used to see the requisite number
of segments. Additional problem gradations are possible.

Beginning in row 2 of Figure 1, Czyzowicz et al. [1] established
the first interesting result: the upper bound of n

2 for the case of all
axis-aligned segments under Solver’s Choice where the Solver can

1



choose to see some points from one side and some from the other.
The argument is an elegant exploitation of the following [7]:

Theorem. (Tutte) A graph G has a perfect matching iff every sub-
set of vertices S is such that the number of connected components
of G\S of odd order is less than or equal to the number of vertices
in S.

The argument begins, WLOG, by extending the segments so
that each end is within some common small epsilon of another
edge, or the boundary. These segments give rise to a dissection
of the original rectangle into “rooms” with tiny passageways be-
tween some adjacent pairs. Form a graph where the nodes of the
graph are the rooms and there is an edge between nodes if there
is a tiny passageway between them. Then use Tutte’s Theorem
to get a near-perfect matching of the rooms. Use the near perfect
matching to situate a set of d n+1

2 e cameras at the passageway to
each pair of rooms, which together see all points on each of the
needed segments from one side or another.

A more careful, and consistent, camera placement enables one
to extend the Czyzowicz et al. argument to give the identical
bound for the more constrained Solver’s Choice problem, as well
as most-constrained Poser’s Choice problem. For all the problems
on orthogonal segments, gaps exist between the best known up-
per and lower bounds, except in the case of the most constrained
Poser’s Choice problem, where a lower bound of n

2 is carried over
from the case of all vertical segments – just consider n vertical
segments all spaced very close to one another and of height h− ε

(h being the height of the rectangle), where the poser requires you
to see all segments from the left. Cameras can effectively see at
most two segments entirely and a tiny bit of any other segment.
Hence d n+1

2 e cameras are required.
The next interesting case we get to, and the only additional one

we will consider in this short article, is that of Poser’s Choice
for the axis-aligned case. A simple example, establishing the 2n

3
lower bound for this problem, pointed out to us four years ago by
Toth [6], is given in Figure 2.

Figure 2. A set of segments for the full Poser’s Choice problem requiring 2n
3 cam-

eras. The sides of the segments which need to be seen are indicated with little
“ticky” marks - i.e. very tiny, orthogonally protruding line segments. The segments
in each of the “H”s require two cameras for all of the specified segment sides to be
seen entirely.

Finally, a 3n
4 upper bound is established by virtue of the follow-

ing:

Theorem. Given n axis-aligned segments contained in a bound-
ing rectangle, it is always possible to see the Poser’s Choice of
sides using at most d 3n

4 e cameras.

Proof. (Sketch) Extend the segments as in the Czyzowicz et al.
argument, and again use the near-perfect matching to pair up

Figure 3. An “H” example (left) and an “h” example (right), in which a single camera
cannot see all points on the required segment sides.

rooms. Call matches of the form shown in Figure 3 “bad matches”
since a single camera cannot entirely see all the needed segment
sides. These are the only cases of two adjoining rooms in which
a single camera does not suffice to see all required segment sides.
Note that in each of these two examples, one can use two cameras
to entirely see the needed segment sides in the two rooms, marked
respectively A and B in each example. Moreover, it is easy to see
that if the three called out lines, m,k,n are part of one bad match,
where two cameras must be expended to see all needed segment
sides, then they are not part of any additional bad matches. Thus
there are at most n/3 bad matches in total.

There are then two cases: (i) There are b ≤ n
4 bad matches,

or (ii) there are n
4 < b ≤ n

3 bad matches. In case (i) we use 2
cameras in each bad match and 1 camera in each good match. In
case (ii) Suppose the are n

3 − h bad matches for 0 ≤ h < n
12 . Use

2 cameras to see each of the 3 defining line segments (i.e. the
analogs of m,n,k in Figure 3) and 1 camera to see each remaining
line segment, In each case a computation shows that we use at
most 3n

4 cameras.
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[5] C. Tóth. Illuminating disjoint line segments in the plane. Dis-
crete and Computational Geometry, 30:489–505, 2003.

[6] C. Toth. Personal communication, 2008.

[7] W. T. Tutte. The factorization of linear graphs. J. London
Math. Soc., 22:107–111, 1947.

[8] J. Urrutia. Art gallery and illumination problems. In J. Sack
and J. Urrutia, editors, Handbook of Computational Geom-
etry, pages 973–1027. Elsevier Science Publishers, Amster-
dam, 2000.

2



Chromatic Clustering in High Dimensional Space

Hu Ding Jinhui Xu

Department of Computer Science and Engineering
State University of New York at Buffalo

{huding, jinhui}@buffalo.edu
1 Overview

Clustering is one of the most fundamental problems in computer science and finds applications in
many different areas [2, 3, 5, 6, 11, 14, 15, 17, 19]. Most existing clustering techniques assume that
the to-be-clustered data items are independent from each other. Thus each data item can “freely”
determine its membership within the resulting clusters, without paying attention to the clustering
of other data items. In recent years, there are also considerable attentions on clustering dependent
data and a number of clustering techniques, such as correlation clustering, point-set clustering,
ensemble clustering, and correlation connected clustering, have been developed [3, 6, 11,14].

In this paper, we consider the following new type of clustering problems, called Chromatic
Clustering, for dependent data. Let G = {G1, · · · , Gn} be a set of n point-sets with each Gi =
{pi1, . . . , piki} consisting of ki ≤ k points in Rd space. A chromatic partition of G is a partition
of the

∑
1≤i≤n ki points into k sets, U1, · · · , Uk, such that each Ui contains no more than one

point from each Gj for j = 1, 2, · · · , n, where the dimensionality d could be very high. The
chromatic k-means clustering (or k-CMeans) of G is to find k points {m1, · · · ,mk} in Rd space
and a chromatic partition U1, · · · , Uk of G such that 1

n

∑
j

∑
q∈Uj
||q − mj ||2 is minimized. The

problem is called full k-CMeans if k1 = k2 = · · · = kn = k. Similarly we can define chromatic k-
Median clustering (or k-CMedians) for G. Chromatic clustering captures the mutual exclusiveness
relationship among data items and is a rather useful model for various applications. Due to the
additional chromatic constraint, chromatic clustering is thus expected to simultaneously solve the
“coloring” and clustering problems, which significantly complicates the problem. We are able to
show that the chromatic clustering problem is challenging to solve even for the case that each
color is shared only by two data items.

Related works: As its generalization, chromatic clustering is naturally related to the tra-
ditional clustering problem. Due to the additional chromatic constraint, chromatic clustering
could behave quite differently from its counterpart. For example, the k-means algorithms in
[5, 8, 12, 13, 18] relies on the fact that all input points in a Voronoi cell of the optimal k mean
points belong to the same cluster. However, such a key locality property no longer holds for the
k-CMeans problem.

Chromatic clustering falls in the umbrella of clustering with constraint. For such type of
clustering, several solutions exist for some variants [4,7,10]. Unfortunately, due to their heuristic
nature, none of them can yield quality guaranteed solutions for the chromatic clustering problem.
The first quality guaranteed solution for chromatic clustering was obtained recently by Ding and
Xu. In [14], they considered a special chromatic clustering problem, where every point-set has
exactly k points in the first quadrant, and the objective is to cluster points by cones apexed
at the origin, and presented the first PTAS for constant k. The k-CMeans and k-CMedians
problems considered in this paper are the general cases of the chromatic clustering problem. Very
recently, Arkin et al. [1] considered a chromatic 2D 2-center clustering problem and presented
both approximation and exact solutions.

1.1 Main Results and Techniques

In this paper, we present three main results, a constant approximation and a (1+ε)-approximation
for k-CMeans and their extensions to k-CMedians.



– Constant approximation: We show that given any λ-approximation for k-means clustering,
it could yield a (18λ+ 16)-approximation for k-CMeans. This not only provides a way for us
to generate an initial constant approximation solution for k-CMeans through some k-means
algorithm, but more importantly reveals the intrinsic connection between the two clustering
problems.

– (1 + ε)-approximation: We show that a near linear time (1 + ε)-approximation solution for
k-CMeans can be obtained using an interesting sphere peeling algorithm. Due to the lack of
locality property in k-CMeans, our sphere peeling algorithm is quite different from the ones
used in [5,18], which in general do not guarantee a (1+ε)-approximation solution for k-CMeans
as shown by our first result. Our sphere peeling algorithm is based on another standalone result,
called Simplex Lemma. The simplex lemma enables us to obtain an approximate mean point of
a set of unknown points through a grid inside a simplex determined by some partial knowledge
of the unknown point set. A unique feature of the simplex lemma is that the complexity of
the grid is independent of the dimensionality, and thus can be used to solve problems in high
dimensional space. With the simplex lemma, our sphere peeling algorithm iteratively generates
the mean points of k-CMeans with each iteration building a simplex for the mean point.

– Extensions to k-CMedians: We further extend the idea for k-CMeans to k-CMedians.
Particularly, we show that any λ-approximation for k-medians can be used to yield a (3λ+2)-
approximation for k-CMedians. With this and a similar sphere peeling technique, we obtain
a (1 + ε)-approximation for k-CMedians.

References
1. Esther M. Arkin, Jos Miguel Daz-Bez, Ferran Hurtado, Piyush Kumar, Joseph S. B. Mitchell, Beln Palop, Pablo

Prez-Lantero, Maria Saumell, Rodrigo I. Silveira: Bichromatic 2-Center of Pairs of Points. LATIN 2012: 25-36
2. David Arthur, Sergei Vassilvitskii: ”k-means++: the advantages of careful seeding”. SODA 2007: 1027-1035
3. Nikhil Bansal, Avrim Blum, Shuchi Chawla: ”Correlation Clustering”.Machine Learning 56(1-3): 89-113 (2004)
4. S.Basu, Ian Davidson: Clustering with Constraints Theory and Practice. ACM KDD 2006
5. M.Badoiu, S.Har-Peled, P.Indyk, “Approximate clustering via core-sets”, Proceedings of the 34th Symposium on

Theory of Computing, pp. 250–257, 2002.
6. C.Bhm, K.Kailing, P.Krger, A.Zimek, ”Computing Clusters of Correlation Connected Objects”.Proc. ACM

SIGMOD International Conference on Management of Data (SIGMOD’04), Paris, France. pp. 455467.
doi:10.1145/1007568.1007620.

7. Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns. Journal of Computational
Biology, 6(3/4):281-297, 1999.

8. Ke Chen: On Coresets for k-Median and k-Means Clustering in Metric and Euclidean Spaces and Their Appli-
cations. SIAM J. Comput. 39(3): 923-947 (2009)

9. S. Dasgupta, ”The hardness of k-means clustering”. Technical Report, 2008.
10. Ayhan Demiriz, Kristin Bennett, and Mark J. Embrechts. Semi-supervised clustering using genetic algorithms.

In Artificial Neural Networks in Engineering, pages 809-814. ASME Press, 1999.
11. Erik Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. ”Correlation clustering in general weighted

graphs”. Theor. Comput. Sci., 361(2):172-187, 2006
12. Dan Feldman, Michael Langberg: A unified framework for approximating and clustering data. STOC 2011:

569-578
13. Dan Feldman, Morteza Monemizadeh, Christian Sohler: A PTAS for k-means clustering based on weak coresets.

Symposium on Computational Geometry 2007: 11-18
14. H.Ding, J.Xu, ”Solving Chromatic Cone Clustering via Minimum Spanning Sphere”, ICALP, 2011
15. S. Har-Peled and S. Mazumdar, “Coresets for k-Means and k-Median Clustering and their Applications,” Proc.

36th ACM Symposium on Theory of Computing, pages 291-300, 2004.
16. Mary Inaba, Naoki Katoh, Hiroshi Imai, ” Applications of Weighted Voronoi Diagrams and Randomization to

Variance-Based k-Clustering (Extended Abstract)”. Symposium on Computational Geometry 1994: 332-339
17. S. G. Kolliopoulos and S. Rao, “A nearly linear-time approximation scheme for the euclidean k-median prob-

lem,” Proc. 7th Annu. European Sympos. Algorithms, pages 378-389, 1999.
18. A. Kumar, Y. Sabharwal, S. Sen, ” Linear-time approximation schemes for clustering problems in any dimen-

sions”. J. ACM 57(2):2010
19. R.Ostrovsky, Y.Rabani, L.J.Schulman, and C.Swamy. ”The Effectiveness of Lloyd-Type Methods for the

k-Means Problem”. Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06). pp. 165174.



Kernel Distance for Geometric Inference

Jeff M. Phillips
University of Utah

Bei Wang
University of Utah

This abstract considers geometric inference from a noisy point cloud using the kernel distance. Recently
Chazal, Cohen-Steiner, and Mérgot [2] introduced distance to a measure, which is a distance-like function
robust to perturbations and noise on the data. Here we show how to use the kernel distance in place of the
distance to a measure; they have very similar properties, but the kernel distance has several advantages.
• The kernel distance has a small coreset, making efficient inference possible on millions of points.
• Its inference works quite naturally using the super-level set of a kernel density estimate.
• The kernel distance is Lipschitz on the outlier parameter σ.

Kernels, Kernel Density Estimates, and Kernel Distance

Figure 1: Geometric inference us-
ing super-level sets of kernel den-
sity estimates on 2000 points.

A kernel is a similarity measure K : Rd × Rd → R+; more similar
points have higher value. For the purposes of this article we will focus
on the Gaussian kernel defined K(p, x) = σ2 exp(−‖p− x‖2/2σ2).

A kernel density estimate represents a continuous distribution func-
tion over Rd for point set P ⊂ Rd:

KDEP (x) =
1

|P |
∑
p∈P

K(p, x).

More generally, it can be applied to any measure µ (on Rd) as
KDEµ(x) =

∫
p∈Rd K(p, x)µ(p)dp.

The kernel distance [3, 5] is a metric between two point sets P and Q, or more generally two measures µ
and ν (as long asK is positive definite, e.g. the Guassian kernel). Define κ(P,Q) = 1

|P |
1
|Q|
∑

p∈P
∑

q∈QK(p, q).
Then the kernel distance is defined

DK(P,Q) =
√
κ(P, P ) + κ(Q,Q)− 2κ(P,Q).

For the kernel distance DK(µ, ν) between two measures µ and ν, we define κ more generally as κ(µ, ν) =∫
p∈Rd

∫
q∈Rd K(p, q)µ(p)µ(q)dpdq. When the points set Q (or measure ν) is a single point x (or unit Dirac

mass at x), then the important term in the kernel distance is κ(P, x) = KDEP (x) (or κ(µ, x) = KDEµ(x)).

Distance to a Measure: A Review

Let S be a compact set, and fS : Rd → R be a distance function to S. As explained in [2], there are a few
properties of fS that are sufficient to make it useful in geometric inference such as [1]:
(F1) fS is 1-Lipschitz: for all x, y ∈ Rd, |fS(x)− fS(y)| ≤ ‖x− y‖.
(F2) f2S is 1-semiconcave: the map x ∈ Rd 7→ (fS(x))2 − ‖x‖2 is concave.

Given a probability measure µ on Rd and let m0 > 0 be a parameter smaller than the total mass of µ, then
the distance to a measure dµ,m0 : Rn → R+ [2] is defined for any point x ∈ Rd as

dµ,m0(x) =

(
1

m0

∫ m0

m=0
(δµ,m(x))2dm

)1/2

, where δµ,m(x) = inf
{
r > 0 : µ(B̄r(x)) ≤ m

}
,



and where Br(x) is a ball of radius r centered at x and B̄r(x) is its closure. It has been shown in [2] using
dµ,m0 in place of fS satisfies (F1) and (F2), and furthermore has the following stability property:

(F3) [Stability] If µ and µ′ are two probability measures on Rd and m0 > 0, then ‖dµ,m0 − dµ′,m0‖∞ ≤
1√
m0
W2(µ, µ

′), where W2 is the Wasserstein distance between the two measures.

Our Results

We demonstrate (with proof sketches) that similar properties hold for the kernel distance defined as dP (x) =
DK(P, x). These properties also hold on dµ(·) = DK(µ, ·) for a measure µ in place of P .
(K1) dP is 1-Lipschitz.

This is implied by d2P being 1-semiconcave.
(K2) d2P is 1-semiconvave: The map x 7→ (dP (x))2 − ‖x‖2 is concave.

In any direction, the second derivative of (dP (x))2 is at most that of a single kernel K(p, x) for any
p, and this is maximized at x = p. The second derivative of ‖x‖2 is 2 everywhere, thus the second
derivative of (dP (x))2 − ‖x‖2 is non-positive, and hence is concave.

(K3) [Stability] If P and Q are two point sets in Rd, then ‖dP − dQ‖∞ ≤ DK(P,Q).

Using that DK(·, ·) is a metric, we compare DK(P,Q), DK(P, x) and DK(Q, x). Note: Wasserstein
and kernel distance are different integral probability metrics [5], so (F3) and (K3) are not comparable.

Advantages of the kernel distance.

• There exists a coreset Q ⊂ P of size O(((1/ε)
√

log(1/εδ))2d/(d+2)) [4] such that ‖dP − dQ‖∞ ≤ ε
and ‖KDEP −KDEQ‖∞ ≤ ε with probability at least 1−δ. The same holds under a random sample of
sizeO((1/ε2)(d+log(1/δ))) [3]. In ongoing work, this allows us to operate with |P | = 100,000,000.

Bottleneck distance between persistence diagrams dB(Dgm(KDEP ),Dgm(KDEQ)) ≤ ε is preserved.
• We can perform geometric inference on noisy P by considering the superlevel sets of KDEP ; the τ -

superlevel set of KDEP is {x ∈ Rd | KDEP (x) ≥ τ}. This follows since dP (·) is monotonic with
KDEP (·); as dP (x) gets smaller, KDEP (x) gets larger. This arguably is a more natural interpretation
than using the sublevel sets of some fS . Figure 1 shows an example with 25% of P as noise.

• Both the distance to a measure and the kernel distance have parameters that control the amount of
outliers allowed (m0 for dµ,m0 and σ for dP ). For dP the smoothing effect of σ has been well-studied,
and in fact dP (x) is Lipschitz continuous with respect to σ (for σ greater than a fixed constant).
Alternatively, dP,m0(x), for fixed x, is not known to be Lipschitz (for arbitrary P ) with respect to m0

and fixed x; we suspect that the Lipschitz constant form0 is a function of ∆(P ) = maxp,p′∈P ‖p−p′‖.
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Abstract

An s-spanner on a set of points S in Rd is a
graph on S where for every two points p, q ∈ S,
there exists a path between them in G that is
less than or equal to s · |pq| where |pq| is the
Euclidean distance between p and q. In this pa-
per we consider the construction of an Euclidean
spanner for imprecise points. In particular, we
are given in the first phase a set of circles with ra-
dius r as the imprecise positions of a set of points
and we preprocess them in O(n log n) time. In
the second phase, the accurate positions of the
points are revealed, one point for every circle,
and we construct the (1 + ε)-spanner in time
O(n ·(r+ 1

ε )2d · log(r+ 1
ε )). The second phase can

also be considered as an algorithm to quickly up-
date the spanner. Our algorithm does not have
any restrictions on the distribution of the points.
It is the first such algorithm with linear running
time.

1 Introduction

While in classical computational geometry all
input values are assumed to be accurate, in
the real world this assumption does not always
hold. This imprecision can be modeled in many
ways and they vary based on their applications
[6, 8, 10, 11]. A popular model assumes that be-
fore the precise input points are known, we know
the region (lines [4], circles/balls [1,3,7,9], fat re-
gions [2, 12], etc) where each point lies in.

We aim to compute a (1 + ε)-spanner on a set
of imprecise points. In the model our algorithm

operates in, an imprecise point p is defined to be
a disk centered at a point ṗ with radius r (which
is dependent on the distance between the closest
pair of points). The assumption is that initially,
the only information of an input point is p and
that later, the precise location of the point p̂ (lo-
cated somewhere within p) is revealed. Given a
set of n points, an Euclidean spanner defines a
graph G on the points, each edge weighted by the
Euclidean length, such that the shortest path be-
tween any two points u, v in the graph is at most
1 + ε times the Euclidean distance of u, v.

Our algorithm preprocess a set
S = {p1, p2, . . . , pn} of n imprecise
points in O(n log n) time such that when
Ŝ = {p̂1, p̂2, . . . , p̂n} is available, we can com-
pute a (1+ε)-spanner in O(n·(r+ 1

ε )2d·log(r+ 1
ε ))

time where d is the dimension of the input. It is
important to note that our algorithm will accept
input sets with overlapping points of any depth.

2 Algorithm Definition

The algorithm we present constructs a (1 +
ε)-spanner or more specifically the deformable
spanner (DefSpanner) as described in [5]. A
defspanner is a specific (1 + ε)-spanner con-
struction that is designed to be easily modified
and updated. More specifically, for a set of
points S in Rd, the defspanner is made up of a
hierarchy of levels Sdlog2 αe ⊆ Sdlog2 αe−1 ⊆ · · · ⊆
Si ⊆ Si−1 ⊆ · · · ⊆ S0 = S where |Sdlog2 αe| = 1.
Any set Si is a maximal subset of Si−1 where
for any two points p, q ∈ Si, |pq| ≥ 2i. Also,
every node p ∈ Si−1 is assigned a parent node q

1



in the level above where |pq| ≤ 2i. The edges of
a Defspanner G of a set S are determined by
connecting nodes within distance c · 2i in level i,
where c = 2r + 16

ε + 4. Such nodes are called
neighbors.

In the preprocessing phase, a DefSpanner Ġ
is constructed with the point set Ṡ as in [5]. The
running time is O(n log n).

When the true positions of the points are re-
vealed, we construct a DefSpanner Ĝ for Ŝ by
inserting the points one by one into Ĝ. Initially,
nodes are inserted in their top-down order in Ĝ,
but the order may change as the algorithm exe-
cutes. We insert each node into the bottom level
of Ĝ if other nodes in the same level have been
inserted, otherwise a new level is added below.
For each node p̂ that we insert into level i, there
are three phases in our algorithm.

Step 1: Check for demotions. First, we compare
the distance between p̂ and any of it’s neighbors
that have been already inserted into Ĝ. If any of
the distances are less than 2i, then we demote the
node to a lower level by delaying it’s insertion.

Step 2: Find a parent. We compare the distances
between p̂ and it’s old parent and subsequently
the old parent’s neighbors. If none of those nodes
are a suitable parent, we promote p̂ up the hi-
erarchy and repeat our tests with it’s old grand-
parent and the old grandparent’s neighbors. We
repeat and promote p̂ until a parent is found or p̂
resides at the top of Ĝ. In certain cases, instead
of testing the old parent, we compare distances
with an ancestor first or with the node that was
considered to be too close (if p̂ was demoted).

Step 3: Find all neighbors. We compare dis-
tances with p̂ and it’s cousins (p̂’s parent’s neigh-
bors’ children) in every level it resides in. We
also check to see if any of the nodes are too close
(less than 2i in level i). In this case (which only
occurs with nodes that have been previously de-
moted in the first step), we demote the node
again.

The algorithm terminates when all nodes have
been inserted into Ĝ. The cost of preprocess-
ing is the DefSpanner construction cost or
O(n log2 α(r + 1/ε)d) [5]. The running time of
our algorithm is O(n · (r + 1

ε )2d · log(r + 1
ε )).
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An Improved Algorithm in Shortest Path Planning for a Tethered

Robot

Ning Xu∗, Peter Brass†, Ivo Vigan‡

1 Introduction

There is vast amount of literature focusing on mo-
tion planning for general robots. However, the same
studies for tethered robots have not been investigated
much. While a robot navigates in an environment
with obstacles, it may meet some problems, such as
a lack of power supply, or losing its wireless com-
munication connection. If a robot is attached to a
flexible tether, it can obtain sufficient power supply
and stable communication through the tether.

Following [1], the shortest path planning problem
for a tethered robot can be described as follows. Let
E be a planar environment which consists of disjoint
polygonal obstacles of n total vertices, s be the start
point, and t be the destination point in the environ-
ment. Suppose a robot, modeled as a point, is at-
tached to an anchor point u by a tether of length L.
The initial configuration of the tether is considered
as a polyline X of k total vertices from s to u. The
goal is to find the shortest path from s to t subject
to the tether length constraint.

In this paper, we assume that (1) neither the robot
nor any part of the tether can enter the interior of any
obstacle, and (2) the robot can cross the tether, i.e.,
the tether can be self intersecting.

First, we consider two different models of the short-
est path planning problem. In the first model, the
tether is automatically retracted and is kept taut,
i.e., the tether is always the shortest path in its ho-
motopy equivalent class. In the second model, the
tether can only be retracted while the robot back-

∗Graduate Center, CUNY, nxu@gc.cuny.edu
†City College of New York, CUNY, peter@cs.ccny.cuny.edu
‡Graduate Center, CUNY, ivigan@gc.cuny.edu

tracks along the tether, because the tether may be
too heavy to be dragged in some case.

Figure 1 illustrates an example of the two models.

u

s

t

X

P
Q

min

min

u

s

t

X

P
Q

min

min

Figure 1: An example of finding the shortest path
for the tethered robot. Pmin is the shortest path,
and Qmin is the tether configuration after the robot
reaches t through Pmin. (left) the first model; (right)
the second model.

Furthermore, we consider the problem of finding
the shortest path for the tethered robot to visit a se-
quence of target points in order. We call this problem
the sequential monitoring problem.

Theorem 1. If the tether is automaticaly retracted,

the shortest path from the starting point s to the des-

tination point t can be computed in O(kn2 log n) time.

Theorem 2. If the tether can only be retracted while

the robot backtracks along the tether, the shortest path

from the starting point s to the destination point t can

be computed in O((k + n) log(k + n) + n2) time.

Theorem 3. The sequential monitoring problem is

NP-hard when the number of target points is O(n),
even if the initial tether length is zero, and all obsta-

cles are rectilinear polygons.

The proof of Theorem 3 is omitted in the abstract.

1



2 The Algorithm

Let P be a path, we denote by P be the reverse path
of P . If the path Q starts where the path P ends, we
denote P ◦Q the concatenation of P and Q.

In the first model, the tether is automatically re-
tracted and is kept taut.

We refer to the destination point t, all bending
points on X and all obstacle points as terminals. For
a terminal v, a point c on X is an event point if v
becomes visible at c while one moves along X from
u to s. For a terminal v and an event point c, we
denote by Pc,v (or Qc,v) the shortest path homotopy
equivalent to the path which is the concatenation of
the subpath of X from s (or u) to c and line segment
(c, v), respectively. We also denote by SP (v, t) the
shortest path from s to t. Figure 2 illustrates an
example.

u

s

t
c

v

X

P
Q

SP(v,t)
c,v

c,v

Figure 2: An example of an event point. c is an event
point with respect to the terminal v. The red, blue
and green path represents Pc,v, Qc,v and SP (v, t)
respectively.

The algorithm to find the shortest path in the first
model is described in the Algorithm 1.

In the second model, the tether can only be re-
tracted while the robot backtracks along the tether.

A point on X is feasible if the robot can leave from
X at this point and arrives t subject to the tether
length constraint.

For an obstacle point v, a point c on X is a can-

didate point if v is visible from c, and the path con-
catenated by the subpath of X from s to c, (c, v) and
the shortest path from v to t has the length L.

The algorithm to find the shortest path in the sec-
ond model is described in the Algorithm 2.
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Algorithm 1: Algorithm SP1

1 Triangulate the environment E;

2 Compute H(X) and H(X) and store the funnels
associated with each triangle on the sleeve;

3 Construct the Euclidean shortest path map from t to
every terminal and compute the shortest paths;

4 foreach terminal v do

5 Partition X into a set of subpaths, such that each
subpath is concave with respect to v;

6 Compute all event points on X and associate these
points to the subpaths which contain them;

7 foreach subpath do

8 Use binary search to find the last event point c

on the subpath with the longest Qc,v subject to
that Qc,v ◦ SP (v, t) is no longer than L;

9 Compute Pc,v ◦ SP (v, t), and compare its length
with the best solution found so far. Set the best
solution to Pc,v ◦ SP (v, t) if it is shorter;

10 end

11 end

Algorithm 2: Algorithm SP2

1 Construct the Euclidean shortest path map from t to
every terminal and compute the shortest paths;

2 If s is a feasible point, directly return the path
X ◦ SP (s, t) as the shortest path;

3 Use binary search to find the line segment of X that
contains the last feasible point;

4 foreach obstacle point v do

5 Check weather there exists a candidate point with
respect to v;

6 Compare with the candidate points obtained before,
choose the point is farther to u along X;

7 end

8 Choose the path that the robot leaves from X at the best
candidate point;

2



Bounded Stretch Homotopic Routing Using Hyperbolic
Embedding of Sensor Networks
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In this paper we consider lightweight routing in a wireless
sensor network deployed in a complex geometric domain Σ
with holes. Our goal is to find short paths of different homotopy
types, i.e., paths that go around holes in different ways. In the
example of Figure 1, there are three holes in the network and
there are many different ways to “thread” a route from s to t.
Observe that paths α, β, γ are all different in a global sense;
in that, e.g., one cannot deform α to β without “lifting” it
over some hole. In contrast, paths γ and δ are only different in
a local manner; one can deform γ to δ continuously through
local changes, keeping δ within the domain. This difference
is characterized by the homotopy type of a path. Two paths
in a Euclidean domain are homotopy equivalent if one can
continuously deform one to the other. A set of paths that
are pairwise homotopy equivalent are said to have the same
homotopy type. The number of homotopy types is infinitely
many (assuming there is at least one hole), as a path can
loop around a hole k times, for any integer k; however, for
most routing scenarios we only care about a finite number of
homotopy types, corresponding to paths in the dual graph of a
triangulation of Σ that do not repeat triangles (and thus do not
loop around holes).

δ

t

s

α

β
γ

Fig. 1. The network has 3 holes
(shaded). Paths α, β, γ have dis-
tinct homotopy types; γ and δ are
homotopy equivalent.

One heuristic algorithm gives
a heuristic path for a given case.
The ratio between the length of
the heuristic path and the length
of the optimal path is defined as
the stretch of this algorithm for
the case.

We introduce a routing frame-
work that guarantees constant
worst case stretch for a given
homotopy type. We assume that
the network is deployed in a geometric domain that is repre-
sented by a polygon Σ. We decompose the domain Σ into a
triangulation, by including certain diagonals connecting vertices
of the polygon Σ. The corners of each triangle are stored
locally, only at the nodes that are inside this triangle, along
with the corners of the (at most 3) triangles that are adjacent
to it. The dual graph of the triangulation is a planar graph D.

1This paper has been submitted to INFOCOM 2013.

s t

Fig. 2. The solid path is the optimal path; the dashed path is the greedy path.

By removing cut edges, one per hole from D, we obtain a tree
T . We then embed the tree in the hyperbolic plane, such that
by tiling copies of the tree we obtain an infinite repeating tree
T .

We use a two-level structure in our scheme.
Level 1: Using a similar idea as in [1], we can use a greedy

algorithm to find a path in the universal covering space of D:
the tree T , with only knowledge of the triangles that contain
the source and the destination. This top-level greedy algorithm
reveals a sequence of triangles that contains the shortest path
of the required homotopy type.

Level 2: Now we have a sequence, ∆ = {41,42, · · · ,4n},
of triangles ∆i, with adjacent triangles in the sequence sharing
a common edge. We develop a greedy, local algorithm that
“navigates” inside the triangles with total travel length at most
a constant times the shortest path inside ∆. The idea is to move
through the sequence greedily, always taking the shortest path
to the boundary of the next triangle. This local algorithm does
not need to know the entire sequence of triangles but only the
current triangle and the shared diagonal with the next triangle.
The following theorem is a major technical contribution of this
paper.

Theorem 1. The length of the greedy path is at most 15π + 2
times the length of the shortest path.

Our low-level greedy routing algorithm within a sequence of
triangles can be extended to greedy routing inside a sequence of
consecutively adjacent simple polygons, with the same worst-
case stretch, as we can always further triangulate each simple



Fig. 3. The blue line is shortest path; the green line is the path used by our
algorithm.

(a) Shortest Path (b) Our algorithm

Fig. 4. In this figure, each node is represented by a circle, and the diameter of
circle is proportional to the traffic load at that node. For shortest path in 4(a),
the loads are largely around the boundary. Our Greedy routing method 4(b)
gives better load balance.

polygon. Therefore, as a bonus feature, our new algorithm can
replace the local routing scheme in the previous geometric
routing schemes that use network decompositions [3]–[5] and
provide constant stretch in the local routing part.

Here are the simulations of our algorithm in terms of the
routing stretch and load balancing. From an evaluation point of
view, we are interested in the performance of the Level 2 of
the algorithm.

Fig. 3 is a polygon domain with a hole. The stretch is 1.34.
Fig. 4 shows the traffic load distribution of the shortest path

algorithm and our algorithm.
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ISOTOPY CONVERGENCE THEOREM

J.Li∗ T.J.Peters†‡

November 3, 2012

Abstract

When approximating a space curve, it is natural to con-
sider whether the knot type of the original curve is pre-
served in the approximant. This preservation is of strong
contemporary interest in computer graphics and visualiza-
tion. We establish a criterion to preserve knot type under
approximation that relies upon convergence in both dis-
tance and total curvature.

Keywords: Knot; Ambient isotopy; Convergence; Total
curvature; Visualization.

1 Introduction

Convergence for curve approximation is often in terms
of distance, such as in Weierstrass approximation theo-
rem [11]. But an approximation in terms of distance does
not necessarily yield ambient isotopic equivalence. How-
ever, ambient isotopic equivalence is a fundamental con-
cern in knot theory, and a theoretical foundation for curve
approximation algorithms in computer graphics and visu-
alization.

So a natural question is what criterion will guarantee
ambient isotopic equivalence for curve approximation?
The answer is that, besides convergence in distance, an
additional hypothesis of total curvature will be sufficient,
that is, convergence in both distance and total curvature.

2 Related Work

The Isotopy Convergence Theorem presented here is mo-
tivated by the question about topological integrity of ge-
ometric models in computer graphics and visualization.
The publications [1, 2, 7, 9] are among the first that pro-
vided algorithms to ensure ambient isotopic approxima-
tions. The paper [6] provided existence criteria for a PL
approximation of a rational spline, but did not include any
specific algorithms.

Recent progress was made for the class of Bézier
curves, by providing stopping criteria for subdivision al-
gorithms to ensure ambient isotopic equivalence for Bézier
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curves of any degree n [4], extending the previous work of
[9], that had been restricted to degree less than 4.

This work here extends to a much broader class of
curves, piecewise C2 curves, where there is no restriction
on approximation algorithms. Because of its generality,
this pure mathematical result is potentially applicable to
both theoretical and practical areas.

3 Preliminaries

Use C to denote a compact, regular, C2, simple, para-
metric, space curve. Let {Ci}∞1 denote a sequence of
piecewise C2, parametric curves. Suppose all curves are
parametrized on [0, 1], that is, C = C(t) and Ci = Ci(t)
for t ∈ [0, 1]. Denote the sub-curve of C corresponding
to [a, b] ⊂ [0, 1] as C[a,b], and similarly use Ci[a,b] for Ci.
Denote a total curvature as Tκ(·).

The definitions [8] of total curvatures of both PL curves
and C2 curves are standard. These can be naturally ex-
tended to define total curvatures of piecewise C2 curves,
for which the concept of exterior angles [8] is needed.

Definition 3.1 (Exterior angles of piecewise C2 curves)
For a piecewise C2 curve γ(t), define the exterior angle at
some ti to be the angle between two vectors γ′(ti−) and
γ′(ti+) where

γ′(ti−) = lim
h→0

γ(ti)− γ(ti − h)

h
,

and

γ′(ti+) = lim
h→0

γ(ti + h)− γ(ti)

h
.

Definition 3.2 (Total curvatures of piecewise C2 curves)
Suppose that a piecewise C2 curve φ(t) is not C2 at
finitely many parameters t1, · · · , tn. Denote the sum of
the total curvatures of all the C2 sub-curves as Tκ1, and
the sum of exterior angles at t1, · · · , tn as Tκ2. Then the
total curvature of φ(t) is Tκ1 + Tκ2.

Definition 3.3 We say that {Ci}∞1 converges to C in dis-
tance if for any ε > 0, there exits an integer N such that
maxt∈[0,1] |Ci(t)− C(t)| < ε for all i ≥ N .

Definition 3.4 We say that {Ci}∞1 converges to C in total
curvature if for any ε > 0, there exits an integer N such
that |Tκ(Ci) − Tκ(C)| < ε for all i ≥ N . We designate
this property as convergence in total curvature.



4 Isotopy Convergence

Convergence in distance provides a lower bound of the to-
tal curvatures of approximants.

Theorem 1 If {Ci}∞1 converges to C in distance, then for
∀ε > 0, there exits an integer N such that Tκ(Ci) >
Tκ(C)− ε for all i ≥ N .

Theorem 2 (Isotopy Convergence) If {Ci}∞1 converges
to C in both distance and total curvature, then there exists
an N such that Ci is ambient isotopic to C for all i ≥ N .

Let = be a set of pairwise disjoint piecewise C2 curves,
(which is a link for closed curves), satisfying the same hy-
potheses as C. Let =i be a set of piecewise C2 parametric
curves. The corollary bellow follows easily.

Corollary 3 1 If the sequence {=i}∞1 converges to = in
both distance and total curvature, then there exists an inte-
ger N such that =i is ambient isotopic to = for all i ≥ N .

4.1 A representative example of offset curves

Offset curves are defined as locus of the points which are
at constant distant along the normal from the generator
curves [5]. They are widely used in various applications,
and the related approximation problems were frequently
studied [5]. It is well-known [10, p. 553 ] that offsets of
spline curves need not be splines. Here we show a repre-
sentative example as a catalyst to ambient isotopic approx-
imations of offset curves.

Let C(t) be a compact, regular, C2, simple, space curve
parametrized in [a, b], whose curvature κ never equals 1.
Then define an offset curve by

Ω(t) = C(t) +N(t),

where N(t) is the normal vector at t, for t ∈ [a, b].
For example, let C(t) = (2 cos t, 2 sin t, t) for t ∈

[0, 2π] be a helix, then it is an easy exercise for the reader
to verify that the above assumptions of C are satisfied, with
κ = 2

5 . Furthermore, it is straightforward to obtain the off-
set curve Ω(t) = (cos t, sin t, t), which is not a spline.

We first show that Ω(t) is regular. Let s(t) =∫ t
a
|C′(t)|dt be the arc-length of C. Then by Frenet-Serret

formulas [3] we have

Ω′(t) = C′(t) +N ′(t) = (1− κ)
ds

dt
T + τ

ds

dt
B,

where T and B are the unit tangent vector and binormal
vector respectively. Since T ⊥ B, if (1 − κ)dsdt 6= 0 then
Ω′(t) 6= 0. But (1 − κ)dsdt 6= 0 because κ 6= 1 and C(t) is
regular by the assumption. Thus Ω(t) is regular.

Now we define a sequence {Ωi(t)}∞i=1 to approximate
Ω(t) by setting

Ωi(t) = C(t) +
i− 1

i
N(t).

It is obvious that {Ωi(t)}∞i=1 converges in distance to
Ω(t). For the convergence in total curvature, note that

1We appreciate the insightful comment regarding this corollary pro-
vided by an anonymous reviewer in the committee of the 22nd Annual
Fall Workshop on Computational Geometry.

limi→∞Ω′i(t) = Ω′(t) and limi→∞ Ω′′i (t) = Ω′′(t). It
follows that

lim
i→∞

Ω′i(t)× Ω′′i (t) = Ω′(t)× Ω′′(t).

Since |Ω′(t)| 6= 0 due to the regularity of Ω(t). Therefore

lim
i→∞

Ω′i(t)× Ω′′i (t)

|Ω′i(t)|3
=

Ω′(t)× Ω′′(t)

|Ω′(t)|3
.

This implies that, at each t, the curvature in the sequence
converges to the curvature of Ω(t). Then the convergence
in total curvature follows.

By the Isotopy Convergence Theorem (Theorem 2), we
conclude that there exists a positive integer N such that
Ωi(t) is ambient isotopic to Ω(t) whenever i > N .

5 Conclusion

We derived the Isotopy Convergence Theorem as moti-
vated by applications for knot theory, computer graphics,
visualization and simulations. Future research directions
may include using the Isotopy Convergence Theorem in
knot classification and discovering applications in the area
of computational topology.
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Medial Residue On a Piecewise Linear Surface

Erin W. Chambers∗ Tao Ju† David Letscher‡

1 Introduction

The medial axis of an object is a skeletal structure
originally defined by Blum [1]. Formally, the medial
axis of an object is the set of points having more
than one closest point on the boundary of the object;
alternatively, it can also be thought of as the set of
centers of discs with maximal size that fit within the
object, or in a variety of other ways. The medial axis
is centered within the object, homology equivalent to
the object if it is an open bounded subset of Rn [4],
and (at least) one dimension lower than that of the
object. These properties make the medial axis ideal
for many applications including shape analysis and
robotic path planning.

We are interested in defining a similar skeletal
structure on a surface S that inherits the properties
of the medial axis. Such a structure could then be
used for applications such as shape analysis of sur-
face patches as well as path planning in non-planar
domains. We are particularly interested in piece-
wise smooth surfaces, which are more representative
of typical outputs of discrete surface reconstruction
algorithms (e.g., triangulated meshes) than globally
smooth surfaces.

A natural approach would be to replace the Eu-
clidean distances in the medial axis definition by
geodesic distances over S. Indeed, Wolter [8] defines
the geodesic medial axis on a smooth Riemannian
manifold as the centers of geodesic discs with maxi-
mal size that fit in S. Interestingly, when S is only
piecewise smooth, such an approach is not sufficient.
Various definitions of the medial axis which are equiv-
alent in Rn may not yield the same structure on S,
and none of these structures guarantees the essential
properties of the medial axis (being low-dimensional
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and homotopy preserving).
In this paper, we propose a new skeleton defini-

tion on a piecewise linear surface S, which we call
the medial residue, and prove that the structure is a
finite curve network that is homotopy equivalent to
S. When S is a planar domain, the medial residue is
equivalent to the medial axis, and so it is a natural
extension of the medial axis onto surfaces. We also
develop an efficient algorithm to compute the medial
residue on a triangulated mesh, which builds on prior
work to compute geodesic distances [5, 6].

2 The medial residue

Let S be a piecewise linear surface in R3. We first
consider the set of points on S that do not have a
unique direction for shortest geodesic paths to ∂S,
denoted MSPD. Note that MSPD reduces to the
medial axis when S has no curvature. It is also not
difficult to show that MSPD is always a finite curve
network. However, MSPD may not preserve the ho-
motopy of S around non-smooth, concave vertices
(where the accumulative angle around the vertex is
greater than 2π). For example, consider a concave
vertex p that is in MSPD and that has a neighbor-
hood on S (which we call a shadow) such that the
shortest path from any point x in the shadow to ∂S
goes through p. Note that any point in the shadow
would have a unique shortest path direction, and
hence MSPD would avoid the entire shadow, which
can potentially cause disconnection in MSPD.

To achieve homotopy equivalence, we will add a
curve subset of the shadows at concave vertices.
While the actual geometry of these additional curve
segments does not affect the topology of our me-
dial residue, we would like these curves to be “cen-
tered”, just like the medial axis. Naturally, we con-
sider straight curves that bisect each shadow zone.
We can formalize the notion of “straight” (which was
proposed in [7]) and “bisect” as follows:

Definition 2.1. We say a curve γ is straight if for
every point p ∈ γ the left and right curve angles at p
are equal.



On a smooth surface, all geodesics are straight,
and in fact this concept is equivalent to being a
geodesic. However, on piecewise linear surfaces, there
are geodesics that are not straight and straight curves
that are not geodesic.

Definition 2.2. A curve γ bisects a piecewise dif-
ferentiable curve X at time t if γ(t) ∈ X and the two
angles bounded by γ and the tangent of X at γ(t) are
equal.

Our medial residue is simply the union of MSPD

and the straight bisectors of the shadows, or formally:

Definition 2.3. The medial residue, MR consists of
any point x ∈ S where we either have x ∈ MSPD or
where there are two distinct shortest paths from x to
the boundary, γ1 and γ2, parameterized by arc length,
which first intersect MSPD ∪ ∂S at γ1(t) = γ2(t)
such that γ1([0, t]) = γ2([0, t]) is straight and bisects
MSPD ∪ ∂S at γ1(t).

The usefulness of medial residue is reflected in the
following theorem:

Theorem 2.4. If S is a PL surface then MR is a
finite curve network homotopy equivalent to S.

3 Algorithm

Given a flat piecewise linear surface (i.e., a polyhe-
dral surface), an algorithm exists that can compute,
in O(n2 log n) time for a mesh with n edges, a sub-
division on each polyhedron face that captures the
combinatorial structure of the distance function from
a set of point sources [5, 6]. We first show that both
the complexity and the correctness of the algorithm
still hold when the point sources are replaced by edges
on the boundary of the surface. Furthermore, we
can show that the MSPD consists of a subset of arcs
and vertices in this subdivision, which can be identi-
fied in O(n2) time. Finally, the bisector curves (the
second part of MR) can be added in O(n2) time.
Hence the end-to-end complexity of computing MR
is O(n2 log n).

4 The cut residue

The medial axis has strong connections to the cut lo-
cus [9]. However, even defining the cut locus on piece-
wise linear surfaces is a challenge, since the tangent
space is not well defined on a non-smooth surface.
The most commonly used definition of the cut locus

of a point x in a non-smooth setting is the closure
of the set of points that have two distinct geodesics
to x. As with the medial axis, this definition gives
problems when applied to a piecewise smooth mani-
fold. As a result, algorithms for computing cut locus
on a triangulated mesh either uses approximation [2]
or are limited to convex surfaces [3]. By replacing ∂S
in our medial residue definition with a point source
x, we can similarly define a cut residue from x that
is equivalent to the cut locus when S is a smooth
surface. The homotopy and curve network proper-
ties in Theorem 2.4 can be shown to hold for cut
residue when S is a piecewise linear surface, and the
algorithm of medial residue can be easily adapted as
well to allow efficient and exact computation of a cut-
locus-like structure on arbitrary polyhedral surfaces.
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Burning the Medial Axes of 3D Shapes

Erin W. Chambers∗ Tao Ju† David Letscher‡ Lu Liu§

1 Introduction

The medial axis of an object, originally proposed by
Blum [1], is the set of points having more than one
closest point on the boundary of the object. It has
been widely used as a shape descriptor due to its
many properties, such as being “thin” (being one di-
mension lower than the object), homology equivalent
to the object [3], and capturing the shape features.

The long term goal of our work is to develop the
definitions of lower-dimensional shape descriptors as
subsets of the medial axis (e.g., medial point of a 2D
object, medial curve or point of a 3D object). These
even “thinner” descriptors are useful in a range of ap-
plications such as shape alignment (using the medial
point), 3D shape matching and deformation (using
the medial curve).

There have been several definitions of a “medial
point” on the medial axis of a 2D object, each de-
fined as the local maximum of some function over
the medial axis. The function proposed by Ogniewicz
and Ilg [6], called Potential Residue (PR), at a me-
dial axis point x is the minimum length of the object
boundary curve between the closest boundary points
to x. The function proposed in our prior work [4],
called Extended Distance Function (EDT), equals the
time at which x is burned away by a fire that is ig-
nited from the ends of the medial axis curves and
propagating geodesically along the curves at a con-
stant speed. Both functions were shown to have a
unique local maximum for a simply connected 2D ob-
ject. The local maximum of EDT was also experi-
mentally observed to be more stable than that of PR
under boundary perturbations.

For a 3D object, the only mathematical definition
of a medial curve that we are aware of was given by
Dey and Sun [2]. The authors generalize the PR func-
tion to the medial axis of a 3D object (which they
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called the Medial Geodesic Function (MGF)), so that
the value at a medial axis point x is the minimum
geodesic distance on the object boundary between the
closest boundary points to x. The medial curve is
then made up of the singular set of MGF.

In this paper, we propose a new function definition
over the medial axis of a 3D shape that generalizes the
EDT over the medial axis of a 2D shape. The new
function, which we call the burn time (BT), captures
the arrival time of a fire ignited from the border of
the medial axis sheets and propagating geodesically
along the sheets at constant speed. We prove several
essential properties of BT that are analogous to EDT.
As an on-going work, we are investigating the defini-
tion of medial curve based on the singular set of BT,
which has the potential to be a more stable descriptor
than the MGF-based definition [2].

2 The burn time function

Consider an object S ⊂ R3 whose medial axis M is
a compact piecewise smooth cell complex. Let f :
∂M → R be the Euclidean distance from points on
∂M to S. Note that f is a 1-Lipschitz function.

M in general is not a 2-manifold, but a collection
of sheets joined at non-manifold curves and points.
We decompose M into manifold regions (denoted by
M (2)), consisting of all points with a neighborhood in
M which is homeomorphic to either an open disk (an
interior point) or a half-open disk (on the boundary
∂M), singular curves (denoted M (1)), consisting of
all points with a neighborhood homeomorphic to a
union of open and half-open disks identified along an
arc, and singular points (denoted M (0)). We refer to
the union of M (1) and M (0) as the singular set of M ,
and use the notation M (s). We say a curve γ : I →M
does not cross the singular set if it can be perturbed
infinitesimally to a path which avoids the singular set
entirely; otherwise, the curve crosses the singular set.

Burning on M proceeds similar to [4]. The fire
is ignited from each point x ∈ ∂M at time f(x), and
propagates geodesically on M at constant speed. The
fire quenches as the fronts meet. When a fire front
hits some point x ∈ M (s) such that x still has some
un-burned disk neighborhood, the front dies out and



does not propagate further. With the non-uniform
ignition time, burning carries the distance to the ob-
ject boundary. The dying-out rule ensures that the
burning is not affected by small sheets in M arising
from perturbations of the object boundary.

We give an explicit definition of burn time that is
analogous to definition of the geodesic distance to the
boundary. While the latter is the length of the short-
est path, we consider the length of some shortest path
tree that branches at the singular set M (s). Formally,

Definition 2.1 A path tree for x ∈ M is a map t :
T → M where T is a rooted tree, t maps the root to
x, and and every leaf of T is mapped to the boundary
of M , such that:

• t maps any vertex of T to M (s).

• for every vertex v of T and disk D embedded in
M with t(v) ∈ D, t(Tv) ∩D 6= {t(v)} (where Tv
is the subtree of T rooted at v)

• t maps every edge to a path that does not cross
the singular set

Intuitively, the branching rule means that each ver-
tex of the path tree will have at least one outgo-
ing child path that lies on each disk neighborhood
of the vertex. We further define the length of a
path tree as the supremum of that length (in M) of
any path from the root to a leaf plus the function
value f on that leaf. We then define burn time (BT)
BTM (x) = inf(t,T ) len(t, T ). We say a path tree is
minimal if it gives a path tree for every point in T ,
so for every p ∈ T , BTM (t(p)) = len(f, Tp).

BT is a generalization of the geodesic distance func-
tion from a manifold surface to a non-manifold sur-
face. When M consists only of manifold regions,
BTM (x) is the shortest geodesic distance from x to
∂M , and the minimal path tree at x is the short-
est geodesic path (void of any branching vertices).
When M (s) is non-empty, BTM (x) still behaves like
a geodesic distance function in the manifold regions
while exhibiting similar properties to EDT [4]:

Proposition 2.2 BTM (x) has these properties:

1. It is 1-Lipschitz over a manifold region or along
a singular curve.

2. It is upper semi-continuous everywhere. Further-
more, BTM (x) = limn→∞BTM (xn) for some se-
quence {xn} converging to x.

3. It has no local minima away from ∂M .

4. {x ∈M | BTM (x) =∞} is equal to the maximal
closed subcomplex of M .

3 Future work

We are currently investigating an algorithm to com-
pute BT over a discretization of the medial axis as
a triangulated mesh. In this setting, a minimal path
tree crosses a triangle or an edge for a bounded num-
ber of times, and hence we expect BT to be com-
putable, for example using a front-advancing algo-
rithm (akin to that for computing geodesic distances
[5]). While it is natural to consider the singular set of
BT as the medial curve, we have observed that this
set alone may not preserve the homotopy of the me-
dial axis, and we are investigating means to restore
the homotopy by adding additional structures. Fi-
nally, it would be interesting to study the stability of
both EDT and BT under boundary perturbations.
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A New Approach to Output-Sensitive Voronoi Diagrams and

Delaunay Triangulations

Gary L. Miller and Donald R. Sheehy

Abstract

We present an algorithm for computing Voronoi di-
agrams and Delaunay triangulations of point sets in
Rd. We also give an output-sensitive analysis, prov-
ing that the running time is at most O(m log n log ∆),
where n is the input size, m is the output size, and
the spread ∆ is the ratio of the diameter to the closest
pair distance. For many realistic settings, the spread
is polynomial in n, in which case we have the only
known algorithm that is within a poly-logarithmic
factor of optimal for the entire range of output sizes
and any fixed dimension.

1 Introduction

Delaunay refinement starts with the Delaunay tri-
angulation of a set of points P and then proceeds
to add extra points called Steiner points to improve
the quality of the Delaunay simplices (see for exam-
ple [4]). Here quality could take different definitions
depending on the application, and we call the output
a quality mesh on a well-spaced superset of P . This
simple procedure has a worst-case running time that
is at least the cost of building DelP , the Delaunay tri-
angulation of the input points, since that is the first
step. In 2006, the Sparse Voronoi Refinement (SVR)
algorithm of Hudson, Miller, and Phillips reordered
the priorities of the standard algorithm and proved
a nearly optimal bound of the running time for any
fixed dimension d [5]. In particular, they showed that
for many inputs, one can compute the Delaunay tri-
angulation of a well-spaced superset of the input in
less time than it would take to compute the Delaunay
triangulation of the input alone. This is only possible
because of the large gap between the best-case and
worst-case complexity of Delaunay triangulations as
a function of n := |P | [8]. The quality condition
guarantees that the refined output lies close to the
best-case, i.e. all vertices touch only a constant num-
ber of Delaunay simplices.

In this paper, we turn this story around and ex-
plore the reverse question: If computing a Delaunay
triangulation of P is no longer a prerequisite for com-
puting a quality mesh, then might it be possible to
use the quality mesh to efficiently compute the Delau-
nay triangulation of P? Indeed, we give a simple algo-
rithm that removes all of the Steiner points by a sim-
ple local flipping routine, leaving behind DelP . We
show how to characterize the flips in terms of the in-
tersection of two Voronoi diagrams. Then, we bound
the total number of combinatorial changes through-
out the algorithm by bounding these intersections,
which can be done using standard tools from the mesh
generation literature.

2 Related Work

Previous output sensitive methods for Voronoi dia-
grams in higher dimensions were based on computing
convex hulls. The shelling approach of Seidel achieves
O(n2 +m log n) running time [7]. This was improved
slightly to lessen the quadratic preprocessing by Ma-
tousek and Schwartzkopf [6]. Another approach is
a “gift-wrapping” algorithm due to Chan [2]. Later
improvements by Chan et al. give an O(m log2 n) for
Voronoi diagrams in R3 [3]. Similarly, an O(m log3 n)
algorithm was given for Voronoi diagrams in R4 by
Amato and Ramos[1].

3 The Algorithm

There are three phases to the algorithm. In the first
phase, a quality mesh is constructed using SVR within
a bounding box containing the points. This mesh has
O(n log ∆) vertices and O(n log ∆) simplices. The
second phase uses local flips to remove the Steiner
points. These flips are ordered to maintain a weighted
Delaunay triangulation with the weights of all input
points increasing uniformly from 0 to∞. The poten-
tial flips are stored in a heap and ordered according



Figure 1: An illustration of the algorithm from left to right. Starting with a point set, it is extended to a
quality mesh. Then the weights of the input points are increased until the extra cells disappear.

to the weights of the input points when the flip will
occur. In the third and final phase, the boundary
vertices are removed. These vertices must be han-
dled separately because they appear in the weighted
Delaunay triangulation for all possible weight assign-
ments to the points.

4 Analysis

When do flips happen? The key to the analy-
sis is to bound the number of flips that occur in the
transformation from VorM to VorP . We do this by
observing that a flip happens at time t exactly if there
is a degenerate (d+2)-tuple of points under the stan-
dard lifting

p 7→ (p, ‖p‖2 − w2
p),

where the weight wp is t for input points and 0 for
Steiner points. That is, all d+ 2 lifted points lie on a
common hyperplane. This hyperplane in Rd+1 has a
dual point using the duality:

(x1, . . . , xd+1)⇔ yd = 2x1y1 + · · ·+ 2xdyd − xd.

For such collections of points, the dual point projects
to the orthocenter of the weighted points, the cen-
ter of a sphere that intersects tangentially each the
spheres with center p and radius wp. By partition-
ing these points into two sets I and S depending on
whether they are input points or Steiner points, one
can easily compute that the distance from the ortho-
center to each point of I is the same. Similarly, the
distance from the orthocenter to each point of S is
the same. Thus, the orthocenter is the intersection
of a face of VorP and a face of VorM . Since all flips
are characterized this way, we can bound the num-
ber of flips by bounding the number of intersections
between these two Voronoi diagrams.

Counting flips. In many problems, it is quite chal-
lenging to bound the number of flips, but several fac-
tors make it possible for our algorithm. First, the ra-
dius of the Voronoi cell of a Steiner point in a quality
mesh is proportional to its distance to the nearest in-
put point. Second, the Voronoi cells of Steiner points
in VorM have only a constant number of faces. So,
by an easy packing argument, we get that the num-
ber of face-face intersections between VorP and VorM
is at most O(m log ∆). That is, each (d − k)-face of
VorP can only intersect O(log ∆) k-faces of VorM . So
the total number of flips is O(m log ∆) and the total
running time is O(m log n log ∆), where the extra log
term comes from the heap operations needed to order
the flips.
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Abstract

This paper is motivated by the problem of subdividing a prismatic mesh to a tetrahedral mesh
(without inserting Steiner points) so as to not only match arbitrarily prescribed boundary conditions
but also allow arbitrary topologies in the base mesh. We explore all possible combinations of these two
factors, and propose a complete solution to this 3D problem by converting it to an equivalent 2D graph
problem, called ”cutting flow problem”. For each case, we not only prove the sufficient and necessary
condition for the existence of solutions, but also provide linear and provable algorithms to compute a
solution whenever there is one.

1 Motivations

A prismatic mesh consists of a set of triangular prisms, where each prism is a volumetric element bounded
by two triangular faces and three quadrilateral faces, and different prisms are glued together along same
type of faces (i.e. triangle to triangle, quadrangle to quadrangle). It in general comes in layers, where each
layer is an extrusion of a triangular mesh (i.e. base mesh) along a line interval (i.e. fiber).

prismatic meshes are often required to be converted to tetrahedral meshes, especially for the purpose of
computation and simulation. In finite element methods, many solvers are designed for tetrahedral meshes and
do not support prismatic elements. In computer graphics, many efficient algorithms for volume rendering,
iso-contouring and particle advection only work for meshes of tetrahedra. Therefore how to triangulate a
prismatic mesh becomes a desirable task.

Splitting a single prism into three tetrahedra is an easy task, but cutting a set of prisms consistently
is much more challenging. Here we only consider conversions without inserting additional points (i.e.
Steiner points). Under certain circumstances user may wish to have control on the boundary triangulation,
i.e. the subdivision of the quadrilateral faces on the boundary of the prismatic mesh, and the internal
subdivision must conform to such boundary conditions. In addition, the underlying base mesh may have
various topologies, which could bring another level of difficulty to the problem of extending the boundary
triangulation into the inside.

There has been a rich literature on triangulating non-tetrahedral volumetric meshes. As an example, [1]
proposed an algorithm to subdivide a volumetric mesh consisting of mixed elements (pyramids, prisms, and
hexahedra) into tetrahedra by comparing and ordering vertex indices. However, most of these works do not
discuss fixed boundary conditions, which makes a completely different problem. In one of our earlier work
[2], we studied this problem with prescribed boundary conditions, but only for topological disks. To our
best knowledge, the result presented here is the first complete solution to prismatic mesh subdivision for all
possible boundary conditions and base topologies.

2 Problem Statement

We subdivide each layer in a prismatic mesh separately, and formulate this problem as an equivalent 2D
graph flow problem in the underlying base mesh. The work is based on the following intuition.

For every individual prism in the mesh, as shown in Figure 1, each quadrilateral face should be split into
two triangles, either through the diagonal (lower-left to upper-right) or anti-diagonal (lower-right to upper-
left). We model such a splitting process by assigning directed flows across edges of the base triangular face.
If a quadrilateral face is split along diagonal, we put a flow into the base triangle across the corresponding
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Figure 1: The intuition: subdividing each individual prism by cutting flow. (a1) to (a6) are valid cuttings,
(a7) and (a8) are invalid.

base edge; otherwise, put a flow out of the base triangle. As shown in Figure 1, a splitting over a prism is
valid if and only if there are both inflow and outflow in the base triangle. In addition, two adjacent prisms
should have a consistent flow on their common quadrilateral face.

To formalize this problem, we need some notations here. Given a triangular mesh G (i.e. a primal

graph), denote its augmented dual graph (or dual graph for short) as G̃∗ = (V ∗ ∪ Ṽ , E∗ ∪ Ẽ), where E∗ and

Ẽ are sets of dual edges corresponding to the inner and boundary primal edges in G respectively, V ∗ is a
set of dual vertices corresponding to the primal faces in G, Ṽ is a set of virtual dual vertices placed off the
boundary of G to bound the edges in Ẽ.

Now we can formally define the original 3D problem of prismatic mesh subdivision as an equivalent 2D
flow problem in the augmented dual graph.

Problem 1. (The Cutting Flow Problem) Given a triangular mesh M with augmented dual graph G̃∗ =

(V ∗ ∪ Ṽ , E∗ ∪ Ẽ), find a flow (called cutting flow) on the edge set of G̃∗, such that:

• Fixed Boundary : The flow on Ẽ is given as input and cannot be changed.

• No Source/Sink : Every vertex in V ∗ must have both inflow and outflow.

3 Results

In this work we provide a complete solution to the cutting flow problem (and therefore the original problem
of prismatic mesh subdivision). We consider all possible boundary conditions (fixed or free) and all possible
base mesh topologies (simply-connected or multiply-connected, planar or non-planar). For each combination
of these two factors, we not only prove the sufficient and necessary condition for existence of solutions, but
also provide efficient algorithms to find a solution if there is one.

The results are summarized in table 1, case by case. Note that this problem is solvable in most cases,
except for a special case on simply-connected planar domain. In fact, the problem is not solvable if and only
if the dual graph is a tree and the boundary condition is uniform. In any other case, the problem can be
solved by a linear algorithm.

PPPPPPBnd
Topo Simply-Connected Multiply-Connected Multiply-Connected Simply-Connected

& Planar & Planar & Non-Planar & Non-Planar

Fixed Conditionally Solvable Always Solvable Always Solvable Always Solvable

Free Always Solvable

Table 1: Results for all possible cases of different boundary conditions (”Bnd”) and base topologies (”Topo”).
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Packing disks that touch the boundary of a square

Adrian Dumitrescu∗ Csaba D. Tóth†

Abstract. It is is shown that the total perimeter of n pair-

wise disjoint disks lying in the unit square U = [0, 1]2 and

touching the boundary of U is O(logn), and this bound is

the best possible.

1 Introduction

Given a collection of geometric objects O, and a con-
tainer U ⊆ Rd, a packing is a finite set of translates
of objects from O that are pairwise disjoint and lie in
the container C. Extremal properties of packings (e.g.,
the densest packing of unit balls) are classical problems
in discrete geometry. We consider a new variant of the
problem related to TSP with neighborhoods (TSPN).

In the Euclidean Traveling Salesman Problem
(ETSP), given a set S of n points in Rd, we wish to find
closed polygonal chain (tour) of minimum Euclidean
length whose vertex set is S. The Euclidean TSP is
known to be NP-hard, but it admits a PTAS in R2. In
the TSP with Neighborhoods (TSPN), given a set of n
sets (neighborhoods) in Rd, we wish to find a closed
polygonal chain of minimum Euclidean length that has
a vertex in each neighborhood. The neighborhoods are
typically simple geometric objects such as disks, poly-
gons, line segments, or lines. TSPN is also NP-hard; it
admits a PTAS for certain types of neighborhoods [5],
but is hard to approximate for others [1].

For n connected (possibly overlapping) neighbor-
hoods in the plane, TSPN can be approximated with
ratio O(log n) by the algorithm of Mata and Mitchell [4].
At its core, the O(log n)-approximation relies on the fol-
lowing early result by Levcopoulos and Lingas [3]: ev-
ery (simple) rectilinear polygon P with n vertices, r of
which are reflex, can be partitioned into rectangles of
total perimeter per(P ) log r in O(n log n) time.

One approach to approximate TSPN (in particular, it
achieves a constant-ratio approximation for unit disks)
is the following. Given a set S of n neighborhoods, com-
pute a maximal subset I ⊆ S of pairwise disjoint neigh-
borhoods (i.e., an independent set), compute a good
tour for I, and then augment it by traversing the bound-
ary of each set in I. Since each neighborhood in S \ I
intersects some neighborhood in I, the augmented tour
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visits all objects in S. This approach is particularly ap-
pealing since good approximation algorithms are often
available for pairwise disjoint neighborhoods [5]. The
bottleneck of this approach is extending a tour of I by
the total perimeter of the objects in I. This lead us to
the following problem [2] (see Fig. 1):

Figure 1: A packing of disks in a rectangle, with all disks
touching the boundary.

Given a simple polygonal domain P in the plane and
n disjoint disks lying in P and touching the boundary
of P , what is the maximum ratio of the total perimeter
of the disks and the perimeter of P? We address this
problem in the simple setting where P is a unit square.

Theorem 1 The total perimeter of n pairwise disjoint
disks lying in the unit square U = [0, 1]2 and touching
the boundary of U is O(log n). Apart from the constant
factor, this bound is the best possible.

2 Proof of Theorem 1

It is enough to bound the total diameter of n disks.

Upper bound. Let S be a set n disjoint disks in the
unit square U = [0, 1]2 that touch the bottom side of
U . Shrink each disk D ∈ S by a factor ρ ∈ ( 1

2 , 1] from
its common point with the x-axis such that its radius
becomes 1/2k for some integer k ∈ N. The disks re-
main disjoint, they still touch the bottom side of U ,
and each radius decreases by a factor of at most 2. Par-
tition the resulting disks into subsets as follows. For
i = 1, . . . , blog2 nc, let Si denote the set of disks of ra-
dius 1/2i; and let S0 be the set of disks of radius less
than 1/n. The sum of diameters of the disks in Si,



i = 1, . . . , blog2 nc, is at most 1, since their horizon-
tal diametrical segments are collinear and disjoint. The
sum of diameters of the disks in S0 is at most 2 since
there are at most n disks altogether. Hence the sum of
diameters of all original disks is at most 2(2 + blog2 nc),
as required.

Lower bound construction. We construct a pack-
ing of O(n) disks in the unit square [− 1

2 ,
1
2 ]× [0, 1] such

that every disk touches the x-axis, and the sum of their
diameters is Ω(log n). To each disk we associate its ver-
tical projection interval (on the x-axis). The algorithm
greedily chooses disks of monotonically decreasing radii
such that (1) every diameter is 1/16k for some k ∈ N0;
and (2) if the projection intervals of two disks overlap,
then one interval contains the other.

For k = 0, 1, . . . , blog16 nc, denote by Sk the set of
disks of diameter 1/16k, constructed by our algorithm.
We recursively allocate a set Xk ⊂ [− 1

2 ,
1
2 ] to Sk, and

then choose disks in Sk such that their projections inter-
vals lie in Xk. Initially, X0 = [− 1

2 ,
1
2 ], and S0 contains

the disk of diameter 1 inscribed in [− 1
2 ,

1
2 ]× [0, 1]. The

length of each maximal interval I ⊆ Xk will be a multi-
ple of 1/16k, so I can be covered by projection intervals
of interior-disjoint disks of diameter 1/16k touching the
x-axis. Every interval I ⊆ Xk will have the property
that any disk of diameter 1/16k whose projection in-
terval is in I is disjoint from any (larger) disk in Sj ,
j < k.

I1(Q)

Q

I2(Q)I3(Q)I1(Q) I2(Q) I3(Q) x

y

−1
2

1
2

1
2

Figure 2: Disk Q and the exponentially decreasing pairs of
intervals Ik(Q), k = 1, 2, . . ..

Consider the disk Q of diameter 1, centered at (0, 12 ),
and tangent to the x-axis (see Fig. 2). It can be easily
verified that: (i) the locus of centers of disks tangent
to both Q and the x-axis is the parabola y = 1

2x
2; and

(ii) any disk of diameter 1/16 and tangent to the x-axis
whose projection interval is in I1(Q) = [− 1

2 ,− 1
4 ]∪ [ 14 ,

1
2 ]

is disjoint from Q. Similarly, for all k ∈ N, any disk of
diameter 1/16k and tangent to the x-axis whose projec-
tion interval is in Ik(Q) = [− 1

2k
,− 1

2k+1 ] ∪ [ 1
2k+1 ,

1
2k

] is
disjoint from Q. For an arbitrary disk D tangent to the
x-axis, and an integer k ≥ 1, denote by Ik(D) ⊆ [− 1

2 ,
1
2 ]

the pair of intervals corresponding to Ik(Q); for k = 0,
Ik(D) consists of only one interval.

We can now recursively allocate intervals in Xk and
choose disks in Sk (k = 0, 1, . . . , blog16 nc) as follows.
Recall that X0 = [− 1

2 ,
1
2 ], and S0 contains a single disk

of unit diameter inscribed in the unit square [− 1
2 ,

1
2 ] ×

[0, 1]. Assume that we have already defined the intervals
in Xk−1, and selected disks in Sk−1. Let Xk be the
union of the interval pairs Ik−j(D) for all D ∈ Sj and
j = 0, 1, . . . , k−1. Place the maximum number of disks
of diameter 1/16k into Sk such that their projection
intervals are contained in Xk. For a disk D ∈ Sj (j =
0, 1, . . . , k − 1) of diameter 1/16j , the two intervals in

Xk−j each have length 1
2 · 1

2k−j · 1
16j = 8k−j

2 · 1
16k

, so they

can each accommodate the projection intervals of 8k−j

2
disks in Sk.

We prove by induction on k that the length of Xk is
1
2 , and so the sum of the diameters of the disks in Sk

is 1
2 , k = 1, 2, . . . , blog16 nc. The interval X0 = [− 1

2 ,
1
2 ]

has length 1. The pair of intervals X1 = [− 1
2 ,− 1

4 ] ∪
[ 14 ,

1
2 ] has length 1

2 . For k = 2, . . . , blog16 nc, the set Xk

consists of two types of (disjoint) intervals: (a) The pair
of intervals I1(D) for every D ∈ Sk−1 covers half of the
projection interval of D. Over all D ∈ Sk−1, they jointly
cover half the length of Xk−1. (b) Each pair of intervals
Ik−j(D) for D ∈ Sk−j , j = 0, . . . , k − 2, has half the
length of Ik−j−1(D). So the sum of the lengths of these
intervals is half the length of Xk−1; although they are
disjoint from Xk−1. Altogether, the sum of lengths of
all intervals in Xk is the same as the length of Xk−1.
By induction, the length of Xk−1 is 1

2 , hence the length
of Xk is also 1

2 , as claimed. This immediately implies

that the sum of diameters of the disks in
⋃blog16 nc

k=0 Sk

is 1 + 1
2blog16 nc. Finally, one can verify that the total

number of disks used is O(n). Write a = blog16 nc.
Indeed, |S0| = 1, and |Sk| = |Xk|/16−k = 16k/2, for
k = 1, . . . , a, where |Xk| denotes the total length of
the intervals in Xk. Consequently, |S0| +

∑a
k=1 |Sk| =

O(16k) = O(n), as required.
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Sum of Squared Edges for MST of a Point Set in a Unit Square
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1 Introduction

Let the weight of a tree be the sum of the squares
of its edge lengths. Given a set of points P in the
unit square let W (P ) be weight of the minimum
spanning tree of P . If P is simply the four corners of
the square, then W (P ) = 3. Gilbert and Pollack [2]
demonstrated that W (P ) = O(1) and this was
extended to an arbitrary number of dimensions by
Bern and Eppstein [1]. While more recent divide-
and-conquer approaches have shown that W (P ) ≤ 4,
no point sets are known with W (P ) > 3, and hence
it has been widely conjectured (e.g. see [3]) that
W (P ) ≤ 3. Here we show that W (P ) < 3.411.

For a point set P in a unit square, MST (P ) denotes
a minimum spanning tree of P . Let MST k(P ) denote
the subgraph of MST (P ) in which all edges of length
greater than k have been removed from MST (P ). For
any given point X ∈ P , define MSTk (X,P ) to be the
connected component of MST k(P ) containingX. Let
� be the corners of the unit square.

Lemma 1. W (P ) ≤W (P ∪�).

Lemma 2. No edge in MST (P ∪ �) has length
greater than 1.

2 Result

By Lemma 1 it suffices to consider only point sets
that include the corners of an enclosing unit square.

Kruskal’s MST construction algorithm considers all
edges defined by P in sorted order. When an edge is
considered, it is added to the existing graph only if it
doesn’t create a cycle. Let em be the mth edge added.
At step m = 0 no edges have been added and at step
m = |P | − 1 =: M , MST (P ) is complete.
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§Université Libre de Bruxelles. (G. Aloupis: Chargé de
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At each step of Kruskal’s algorithm, each con-
nected component of edges is a tree. We define tmX
to be the tree at step m that contains point X. It
helps to initialize the algorithm at m = 0 by let-
ting every point X of P be a singular tree t0X that is
augmented when X is an endpoint of an edge that
is added. We also initialize e0 = 0. Notice that
tmX = MST|em |(X,P ). Let CH(t) denote the vertices
of the convex hull of a tree t. If X is on CH(tmX), let
∠m(X) be the range of angles for which it is extreme.
We set ∠0(X) = [0◦, 360◦]. Over time this range of
angles is reduced, and may have size 0 if X is no
longer on the hull. At any time m, for any given con-
nected component Z, the set of all ∠m(X) for each
point X ∈ Z partitions the angle range [0, 360].

With this in place we define the region Cm(X).
If at time m, X is on CH(tmX) and extreme in some
range [α, β] = ∠m(X) then Cm(X) is the sector of a

circle centered at X, with radius |em|2 and spanning
the angle range [α, β]. If X is not on the hull of tmX ,
then Cm(X) is empty. Let C∗m(X) be the union of
all the sectors that X has defined up to step m; that
is C∗m(X) = ∪mµ=0C

µ(X).
For a tree tmX , we define the region AmX as follows.

AmX =
⋃
Y ∈tmX

C∗m(Y ).

AmX is contained in the union of discs of radius |em|2
centered on all points of P in the same component
as X. Points in different components have distance
greater than |em|, otherwise an edge between them
would have already been added. Thus if AmX and AmY
are different, then they are disjoint. Let Am denote
union of all these regions and let Φm denote the area
of all such regions defined at time m.

At time m, there are |P | − m trees. Recall that
points of P not yet joined to other points are also
considered to be trees. Let `m = |em|2.

Lemma 3. Φm+1 = Φm + π
4 (|P | −m)(`m+1 − `m).

Proof. At time m, each point X on CH(tmX) has a

sector Cm(X) with radius |em|2 =
√
`m

2 . From our
definition of Cm(X), the sectors of all points on the



Figure 1: Depiction of R for d ∈ {0.3, 0.6, 0.7, 1.0}.

convex hull of tmX partition a circle of radius
√
`m

2 ,

which has area π`m

4 . From step m to m + 1, the

radius of each of these sectors increases to
√
`m+1

2 and
the total area of the partitioned circle increases to
π`m+1

4 . There are |P | −m trees that each have this
growth, and whose regions are disjoint, so multiplying
the difference π

4 (`m+1 − `m) from each tree by the
number of trees, |P | −m, gives the result.

Let Wm denote the sum of the weights of all trees
at time m.

Lemma 4. Wm = 4
πΦm − (|P | −m)`m.

Proof. We induct on m. For the base case, m = 0,
the spanning tree consists of no edges and all points
are disconnected. Consequently, W 0 = 0, Φ0 = 0,
and `0 = 0. Assume that the statement holds for
Wm. We will prove that it holds for Wm+1.

Because em+1 is the edge added at step m+1,
we start with Wm+1 = Wm + `m+1. By the in-
duction hypothesis, we substitute Wm to obtain
4
πΦm − (|P | −m)`m + `m+1. By substitution, using
Lemma 3, this equals 4

πΦm+1−(|P |−m)`m+1+`m+1.
Simple rearranging yields the claimed result.

Lemma 5. Let d denote |eM |. If d ≤ 1
2 , ΦM ≤

2d+ πd2

4 + 1. Otherwise, ΦM ≤ d2
√

3− 1√
3

+ 5πd2

12 +

4(d− d2) + 1.

Proof. In Figure 1, we depict a regionR that we claim
covers AM . For every point x on each edge e of the
square, define a circle of radius min{d2 ,

f
2 }, where f

is the distance from x to the farther endpoint of e.

This circle is meant to represent a specific radius of
the growing circle that corresponds to em as the al-
gorithm progresses. If x were a point in P , then its
circle would intersect the equivalent growing circles
centered on the endpoints of e. Therefore x would
no longer be on the convex hull of its component, af-
ter the two endpoints join. This would further imply
that no sector of x could keep expanding. We define
R to be the union of all such circles centered on the
boundary of the square, together with the square re-
gion itself. This represents an upper bound on the
region that AM can occupy, as the extreme case oc-
curs when points in P are located on the boundary
of the square.

It remains to show that R cannot grow any more
on account of points of P inside the square. Suppose
that an interior point y grows some sector Cm(y) that
contributes towards ΦM outside R. Without loss of
generality let this extra contribution be closest to the
top edge e of the square. Just like above, CM (y) can
only grow above e if y is part of the upper hull of tmy
and that cannot happen if y is in the same compo-
nent as both endpoints of e. Let x be the orthogonal
projection of y on e and assume without loss of gen-
erality that the endpoint of e farthest to y is the right
endpoint r. Therefore the endpoint of e farthest to
x is also r. Furthermore, the midpoints of xr and yr
have the same x-coordinate. Therefore, the portion
of CM (y) above e is contained in the circle of radius
min{d2 ,

f
2 } centered at x, which contradicts the as-

sumption. All that remains is to calculate the area
of R. This can be done algebraically but details are
omitted from this version.

Theorem 6. For any set of points P in the unit

square, W (P ) ≤ 3
√
3+4
π − 1

π
√
3

+ 2
3 ≈ 3.4101.

Proof. From Lemma 1, we can assume that P in-
cludes the corners of its enclosing unit square. WM =
W (P ), and by Lemma 4 is equal to 4

πΦM − `M . This
in turn is bounded in terms of d in Lemma 5. Combin-
ing, we obtain the following upper bounds on W (P )

in terms of d: 4d2
√
3+16(d−d2)+4

π − 4
π
√
3

+ 5d2

3 −d
2 when

d > 0.5 and 8d−4
π for d ≤ 0.5. This function is mono-

tonically increasing for 0 ≤ d ≤ 1, so substituting
d = 1 and simplifying gives the claimed bound.
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Computing Small Hitting Sets for Convex Ranges.
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Abstract

Let S be a set of n given points in R2. If A is a convex subset of R2 its “size” is defined as
|A ∩ S|, the number of points of S it contains. We describe an O(n(log n)4) algorithm to find
points z1 6= z2, at least one of which must meet any convex set of size greater than 4n/7; z1 and
z2 comprise a hitting set of size two for such convex ranges. This algorithm can then be used
to construct (i) three points, one of which must meet any convex set of size > 8n/15; (ii) four
points, one of which must meet any convex set of size > 16n/31; (iii) five points, one of which
must meet any convex set of size > 20n/41.

Let S be a set of n given points in general position in R2. If A is a convex subset of R2, its
“size” is defined to be |A ∩ S|, the number of points of S that it contains. The (Tukey) depth of
a point z ∈ R2 is defined as the minimum (over all halfspaces h containing z) of |S ∩ h|, the size
of the smallest halfspace containing z. It is familiar that there always exists a point z ∈ R2 (z not
necessarily in S) with depth d(z) ≥ n/3. Such a point is called a centerpoint for S. The constant
c = 1/3 is best-possible: for every c > 1/3 there are sets S with respect to which NO point has
depth cn. The interesting algorithm of Jadhav and Mukhopadhyay [2] computes a centerpoint in
linear time.

Alternatively, if z is a centerpoint for S, every convex set of size > 2n/3 MUST contain z. A
centerpoint may thus be said to “hit” all convex subsets of R2 with more than 2/3 of the points of
S. For this reason, centerpoint z is called a hitting-set (of size 1) for convex sets of size > 2n/3.
Mustafa and Ray [4], following related work of Aronov et. al. [1], studied the possibilities for hitting
sets with more than one point, a natural extension of the notion of centerpoint. They showed that
given S ⊆ R2 there are points z1 6= z2 (not necessarily in S) such that every convex set of size
> 4n/7 must meet at least one of them. In addition they showed the constant 4/7 to be best
possible for hitting sets of size 2: for every c < 4/7 there are sets S for which, whatever pair x 6= y
be chosen, there is a convex subset containing > cn points of S, but containing neither x nor y).
In [1] it had been shown that the optimal constant c was in the interval [5/9, 5/8].

Let ck ∈ (0, 1) be the smallest constant for which, given any set S of n points in R2, there are
distinct points z1, . . . , zk, at least one of which must meet any convex set of size > ckn. We know
c1 = 2/3 and c2 = 4/7. Mustafa and Ray were able to show that c3 ∈ (5/11, 8/15], that c4 ≤ 16/31
and that c5 ≤ 20/41.
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Here we address some algorithmic questions about finding small hitting sets. The details are
contained in the following statement, and its proof.

Theorem 1 Let S be a set of n given points in general position in R2 and take c2 = 4/7. Then in
O(n(log n)4), distinct points z1, z2 may be found so that if A is a convex set of size > c2n, at least
one of these points is in A.

Consider the set R of all convex subsets of size > c2n. For each pair A 6= B in R consider A ∩B.
Note that |A ∩ B| > n/7, so there is a point pA,B = (u, v) ∈ A ∩ B of minimal y−coordinate.
The existence proof in [4] showed that z1 may be taken as such a point, but one for a pair A′, B′

where pA′,B′ = (u, v) has v as large as possible (a point in the intersection of two ranges whose
lowest point is highest). They also showed that z2 may then be taken as the (usual) centerpoint
for S\(A′ ∩B′) and everything works out.

Let p = (u, v) be the lowest point in A′∩B′ - the intersection of two ranges, each of size at least
c2n - where v is as large as possible (its a highest lowest point). The proof of the theorem relies
on understanding what such a point looks like in the line arrangement dual to S. We combine this
with tools introduced by Matoušek [3] to compute z1 in the stated complexity. Once we have z1,
z2 - the centerpoint of S\(A′ ∩B′) - can be found in linear time.

It is easy now to show

Corollary 1 As in Theorem 1, in O(n(log n)4) we can find (i) distinct points z1, z2, z3, one of
which must meet any convex set of size > 8n/15; (ii) points z′

1, z
′
2, z

′
3, z

′
4, one of which must meet

any convex set of size > 16n/31; (iii) points z′′
1 , z′′

2 , z′′
3 , z′′

4 , z′′
5 , one of which must meet any convex

set of size > 20n/41.
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Abstract

A V-shape is an infinite polygonal region bounded
by two pairs of parallel rays emanating from two
vertices (see Figure 1). We describe a randomized
algorithm that, given n points and a number k, finds
the minimum-width V-shape enclosing all but k of
the points with probability at least 1 − 1/nc for any
c, requiring O(n2) space with expected running time
O(cn2(k + 1)4 log n(log n log log n + k)).

1 Introduction

Motivation. The motivation for this problem
comes from curve reconstruction: given a set of points
sampled from a curve in the plane, find a shape close
to the original curve. It has been suggested in [AD-V]
that in an area where the curve makes a sharp turn,
it makes sense to model the curve by a V-shape. The
authors remark that it would be natural to investigate
a variant that can handle a small number of outliers.
We investigate that variant here. The problem is an
instance of a large class of problems known as geomet-
ric optimization or fitting questions, (see [GeomOpt]
for a survey).

Definitions. Consider two rays with a common
vertex. Call these the outer rays. Make a copy of the
outer rays superimposed on the original and call the
copy the inner rays. Translate the inner rays while
keeping their common vertex within the convex hull
of the outer rays. The region between the inner and
outer rays is called a V-shape (see Figure 1).

A strip is the region bounded by two parallel lines.
Observe that a V-shape is contained in the union
of two strips. The width of a strip is the distance

1Work by B.A. on this paper has been supported by NSF
Grants CCF-08-30691, CCF-11-17336, and CCF-12-18791, and
by NSA MSP Grant H98230-10-1-0210.

Figure 1: Left: a V-shape with six outliers. Right: a
both-outer V-shape, an inner-outer V-shape, and a
both-inner V-shape (in left-to-right-order).

between its two lines. The width of a V-shape is the
width of its wider strip. An outlier of a V-shape is a
point not contained in that V-shape.

Previous work. In [AD-V], the authors develop
an algorithm for covering a point set with a V-shape
of minimum width that runs in O(n2 log n) time and
uses O(n2) space. They also find a constant-factor ap-
proximation algorithm with running time O(n log n),
and a (1 + ε)-approximation algorithm with a running
time of O((n/ε) log n + n/(ε3/2) log2(1/ε)), which is
O(n log n) for a constant ε.

Result. Given a set of n points in the plane and
an integer k, we show how to find the minimum-width
V-shape enclosing all but k of the points.

2 The algorithm

Theorem 1. There is a randomized algorithm that,
given n points and a number k, finds the minimum-
width V-shape enclosing all but k of the points with
probability at least 1 − 1/nc for any c, requiring
O(n2) space with expected running time O(cn2(k +
1)4 log n(log n log log n + k)).

Proof. A V-shape is locally minimal with respect to
a point set P if there is no way to decrease the width
of either of the strips by a slight translation of one
of the rays or by a slight simultaneous rotation of
two parallel rays, without increasing the number of
outliers. (Intuitively, both of its strips should hug the
part of the point set they cover.) Since there exists
a locally minimal V-shape that achieves the smallest
possible width of all V-shapes, it is safe to focus only
on locally minimal V-shapes.

We divide locally minimal V-shapes into the same
three classes as [AD-V] (see Figure 1). A both-outer
V-shape is a locally minimal V-shape where both outer



rays have two points on them. A both-inner V-shape
is a locally minimal V-shape where both inner rays
have two points on them. An inner-outer V-shape
is a locally minimal V-shape where one of the outer
rays and one of the inner rays has two points on it.
The algorithm works by finding the minimum-width
V-shape of each class, and returning the one that has
the smallest width of all three.

Our approach for the both-outer case and the inner-
outer case was inspired by the approach of [AD-V] for
the inner-outer case, except we use a binary search
for one step where they use total enumeration. When
there are zero outliers, our algorithm for the both-
outer and inner-outer cases would be easier to imple-
ment than theirs, at the cost of a logarithmic factor
in the running time. However, most of the complex-
ity of their solution was in the both-outer case, and
we use their both-outer algorithm as a black box in
our both-outer algorithm, by running it on random
subsets of the point set (or the entire point set when
there are zero outliers).

We handle both-inner V-shapes and inner-outer V-
shapes in almost the same way (see Figure 2). We
begin by enumerating the edges at levels 0 through
k of the point set. An edge at level k of a point set
P is a directed edge connecting two points in the
set such that exactly k of the points lie to the left
of the directed line through the edge (so in general
position there are n− k − 2 points to the right). For
example, an edge at level 0 is a directed edge of the
convex hull. Each enumerated edge e is considered as
a candidate for one of the outer rays to go through.
The points to the left of e are considered outliers
already accounted for. For each e, we do a binary
search among points not yet considered outliers. The
order for the search is by perpendicular distance from
e, which represents the width of the first candidate
strip. For each point of the search we find the second
strip that has the smallest possible width and still
covers the remaining points, except the outliers. If the
second strip is wider than the first, the binary search
moves farther out from e so that the second strip has
fewer points, otherwise it moves closer. To find the
second strip, we again enumerate the edges at levels
0 through k of the remaining points. The precise
definition of “remaining” here is the key difference
between the both-outer and the inner-outer algorithm;
we will gloss over this subtle point for now. By now
we have chosen three rays, and have no freedom for
the fourth: it is dictated by how many more outliers
we need. The running time is O(n2(k + 1)2 log2 n).

e e

Figure 2: Snapshot of inner-outer algorithm (left) and
both-outer algorithm (right).

The best deterministic algorithm we have for find-
ing the minimum-width both-inner V-shape runs in
O(n3k2 log n) time. Instead, we use a randomized
algorithm that simply takes many random samples
of the given point set. For each sample, it enumer-
ates all both-inner V-shapes (with no outliers) us-
ing the algorithm from [AD-V]. We show that with
probability 1 − nc, the minimum-width both-inner
V-shape with k outliers will be one of the V-shapes
enumerated. The V-shapes we enumerate might have
more than k outliers, so we use a range searching
data structure from [Range-Search, pages 2–3] to
check that, and discard the V-shapes that have too
many. The running time of the both-inner case is
O(cn2(k + 1)4 log n(log n log logn + k)), which domi-
nates the run time of the other two cases.
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