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Abstract

A V-shape is an infinite polygonal region bounded
by two pairs of parallel rays emanating from two
vertices (see Figure 1). We describe a randomized
algorithm that, given n points and a number k, finds
the minimum-width V-shape enclosing all but k of
the points with probability at least 1 — 1/n¢ for any
¢, requiring O(n?) space with expected running time
O(en?(k + 1)*log n(log nloglogn + k)).

1 Introduction

Motivation. The motivation for this problem
comes from curve reconstruction: given a set of points
sampled from a curve in the plane, find a shape close
to the original curve. It has been suggested in [AD-V]
that in an area where the curve makes a sharp turn,
it makes sense to model the curve by a V-shape. The
authors remark that it would be natural to investigate
a variant that can handle a small number of outliers.
We investigate that variant here. The problem is an
instance of a large class of problems known as geomet-
ric optimization or fitting questions, (see [GeomOpt]
for a survey).

Definitions. Consider two rays with a common
vertex. Call these the outer rays. Make a copy of the
outer rays superimposed on the original and call the
copy the inner rays. Translate the inner rays while
keeping their common vertex within the convex hull
of the outer rays. The region between the inner and
outer rays is called a V-shape (see Figure 1).

A strip is the region bounded by two parallel lines.
Observe that a V-shape is contained in the union
of two strips. The width of a strip is the distance
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Figure 1: Left: a V-shape with six outliers. Right: a
both-outer V-shape, an inner-outer V-shape, and a
both-inner V-shape (in left-to-right-order).

between its two lines. The width of a V-shape is the
width of its wider strip. An outlier of a V-shape is a
point not contained in that V-shape.

Previous work. In [AD-V], the authors develop
an algorithm for covering a point set with a V-shape
of minimum width that runs in O(n?logn) time and
uses O(n?) space. They also find a constant-factor ap-
proximation algorithm with running time O(nlogn),
and a (14 ¢)-approximation algorithm with a running
time of O((n/e)logn + n/(e3/?)1log?(1/¢)), which is
O(nlogn) for a constant ¢.

Result. Given a set of n points in the plane and
an integer k, we show how to find the minimum-width
V-shape enclosing all but k of the points.

2 The algorithm

Theorem 1. There is a randomized algorithm that,
giwen n points and a number k, finds the minimum-
width V-shape enclosing all but k of the points with
probability at least 1 — 1/n® for any c, requiring
O(n?) space with expected running time O(cn?(k +
1)*logn(lognloglogn + k)).

Proof. A V-shape is locally minimal with respect to
a point set P if there is no way to decrease the width
of either of the strips by a slight translation of one
of the rays or by a slight simultaneous rotation of
two parallel rays, without increasing the number of
outliers. (Intuitively, both of its strips should hug the
part of the point set they cover.) Since there exists
a locally minimal V-shape that achieves the smallest
possible width of all V-shapes, it is safe to focus only
on locally minimal V-shapes.

We divide locally minimal V-shapes into the same
three classes as [AD-V] (see Figure 1). A both-outer
V-shape is a locally minimal V-shape where both outer



rays have two points on them. A both-inner V-shape
is a locally minimal V-shape where both inner rays
have two points on them. An inner-outer V-shape
is a locally minimal V-shape where one of the outer
rays and one of the inner rays has two points on it.
The algorithm works by finding the minimum-width
V-shape of each class, and returning the one that has
the smallest width of all three.

Our approach for the both-outer case and the inner-
outer case was inspired by the approach of [AD-V] for
the inner-outer case, except we use a binary search
for one step where they use total enumeration. When
there are zero outliers, our algorithm for the both-
outer and inner-outer cases would be easier to imple-
ment than theirs, at the cost of a logarithmic factor
in the running time. However, most of the complex-
ity of their solution was in the both-outer case, and
we use their both-outer algorithm as a black box in
our both-outer algorithm, by running it on random
subsets of the point set (or the entire point set when
there are zero outliers).

We handle both-inner V-shapes and inner-outer V-
shapes in almost the same way (see Figure 2). We
begin by enumerating the edges at levels 0 through
k of the point set. An edge at level k of a point set
P is a directed edge connecting two points in the
set such that exactly k£ of the points lie to the left
of the directed line through the edge (so in general
position there are n — k — 2 points to the right). For
example, an edge at level 0 is a directed edge of the
convex hull. Each enumerated edge e is considered as
a candidate for one of the outer rays to go through.
The points to the left of e are considered outliers
already accounted for. For each e, we do a binary
search among points not yet considered outliers. The
order for the search is by perpendicular distance from
e, which represents the width of the first candidate
strip. For each point of the search we find the second
strip that has the smallest possible width and still
covers the remaining points, except the outliers. If the
second strip is wider than the first, the binary search
moves farther out from e so that the second strip has
fewer points, otherwise it moves closer. To find the
second strip, we again enumerate the edges at levels
0 through k of the remaining points. The precise
definition of “remaining” here is the key difference
between the both-outer and the inner-outer algorithm;
we will gloss over this subtle point for now. By now
we have chosen three rays, and have no freedom for
the fourth: it is dictated by how many more outliers
we need. The running time is O(n2(k + 1)2log®n).

Figure 2: Snapshot of inner-outer algorithm (left) and
both-outer algorithm (right).

The best deterministic algorithm we have for find-
ing the minimum-width both-inner V-shape runs in
O(n3k?logn) time. Instead, we use a randomized
algorithm that simply takes many random samples
of the given point set. For each sample, it enumer-
ates all both-inner V-shapes (with no outliers) us-
ing the algorithm from [AD-V]. We show that with
probability 1 — n¢, the minimum-width both-inner
V-shape with k outliers will be one of the V-shapes
enumerated. The V-shapes we enumerate might have
more than k outliers, so we use a range searching
data structure from [Range-Search, pages 2-3] to
check that, and discard the V-shapes that have too
many. The running time of the both-inner case is
O(en?(k + 1)*log n(log nloglogn + k)), which domi-
nates the run time of the other two cases. O
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