Sum of Squared Edges for MST of a Point Set in a Unit Square

Oswin Aichholzer* Sarah R. Allen^{†‡} Greg Aloupis[§] Luis Barba^{¶§} Prosenjit Bose[¶] Jean-Lou De Carufel[¶] John Iacono[‡] Stefan Langerman[§]

Diane L. Souvaine[†]

Introduction 1

Let the *weight* of a tree be the sum of the squares of its edge lengths. Given a set of points P in the unit square let W(P) be weight of the minimum spanning tree of P. If P is simply the four corners of the square, then W(P) = 3. Gilbert and Pollack [2] demonstrated that W(P) = O(1) and this was extended to an arbitrary number of dimensions by Bern and Eppstein [1]. While more recent divideand-conquer approaches have shown that $W(P) \leq 4$, no point sets are known with W(P) > 3, and hence it has been widely conjectured (e.g. see [3]) that $W(P) \leq 3$. Here we show that W(P) < 3.411.

For a point set P in a unit square, MST(P) denotes a minimum spanning tree of P. Let $MST_k(P)$ denote the subgraph of MST(P) in which all edges of length greater than k have been removed from MST(P). For any given point $X \in P$, define $MST_k(X, P)$ to be the connected component of $MST_k(P)$ containing X. Let \boxplus be the corners of the unit square.

Lemma 1. $W(P) \leq W(P \cup \boxplus)$.

Lemma 2. No edge in $MST(P \cup \boxplus)$ has length greater than 1.

2 Result

By Lemma 1 it suffices to consider only point sets that include the corners of an enclosing unit square.

Kruskal's MST construction algorithm considers all edges defined by P in sorted order. When an edge is considered, it is added to the existing graph only if it doesn't create a cycle. Let e_m be the m^{th} edge added. At step m = 0 no edges have been added and at step m = |P| - 1 =: M, MST(P) is complete.

[¶]Carleton University.

At each step of Kruskal's algorithm, each connected component of edges is a tree. We define t_X^m to be the tree at step m that contains point X. It helps to initialize the algorithm at m = 0 by letting every point X of P be a singular tree t_X^0 that is augmented when X is an endpoint of an edge that is added. We also initialize $e_0 = 0$. Notice that $t_X^m = MST_{|e_m|}(X, P)$. Let $\mathcal{CH}(t)$ denote the vertices of the convex hull of a tree t. If X is on $\mathcal{CH}(t_X^m)$, let $\angle^{m}(X)$ be the range of angles for which it is extreme. We set $\angle^{0}(X) = [0^{\circ}, 360^{\circ}]$. Over time this range of angles is reduced, and may have size 0 if X is no longer on the hull. At any time m, for any given connected component Z, the set of all $\angle^m(X)$ for each point $X \in \mathbb{Z}$ partitions the angle range [0, 360].

With this in place we define the region $C^m(X)$. If at time m, X is on $\mathcal{CH}(t_X^m)$ and extreme in some range $[\alpha, \beta] = \angle^m(X)$ then $C^m(X)$ is the sector of a circle centered at X, with radius $\frac{|e_m|}{2}$ and spanning the angle range $[\alpha, \beta]$. If X is not on the hull of t_X^m , then $C^m(X)$ is empty. Let $C^{*m}(X)$ be the union of all the sectors that X has defined up to step m; that is $C^{*m}(X) = \bigcup_{\mu=0}^m C^{\mu}(X)$. For a tree t_X^m , we define the region A_X^m as follows.

$$A_X^m = \bigcup_{Y \in t_X^m} C^{*m}(Y).$$

 A_X^m is contained in the union of discs of radius $\frac{|e_m|}{2}$ centered on all points of P in the same component as X. Points in different components have distance greater than $|e_m|$, otherwise an edge between them would have already been added. Thus if A_X^m and A_Y^m are different, then they are disjoint. Let A^m denote union of all these regions and let Φ^m denote the area of all such regions defined at time m.

At time m, there are |P| - m trees. Recall that points of P not yet joined to other points are also considered to be trees. Let $\ell^m = |e_m|^2$.

Lemma 3.
$$\Phi^{m+1} = \Phi^m + \frac{\pi}{4}(|P| - m)(\ell^{m+1} - \ell^m).$$

Proof. At time m, each point X on $\mathcal{CH}(t_X^m)$ has a sector $C^m(X)$ with radius $\frac{|e_m|}{2} = \frac{\sqrt{\ell^m}}{2}$. From our definition of $C^m(X)$, the sectors of all points on the

^{*}Institute for Software Technology, Graz University of Technology, supported by the ESF EUROCORES programme EuroGIGA CRP ComPoSe, Austrian Science Fund (FWF): I648-N18.

[†]Tufts University, Supported in part by NSF CCF-0830734. [‡]Polytechnic Institute of New York University.

 $^{^{\}S}$ Université Libre de Bruxelles. (G. Aloupis: Chargé de Recherches du F.R.S-FNRS; S. Langerman: Directeur de Recherches du F.R.S.-FNRS.)

Figure 1: Depiction of R for $d \in \{0.3, 0.6, 0.7, 1.0\}$.

convex hull of t_X^m partition a circle of radius $\frac{\sqrt{\ell^m}}{2}$, which has area $\frac{\pi \ell^m}{4}$. From step m to m + 1, the radius of each of these sectors increases to $\frac{\sqrt{\ell^{m+1}}}{2}$ and the total area of the partitioned circle increases to $\frac{\pi \ell^{m+1}}{4}$. There are |P| - m trees that each have this growth, and whose regions are disjoint, so multiplying the difference $\frac{\pi}{4}(\ell^{m+1} - \ell^m)$ from each tree by the number of trees, |P| - m, gives the result. \Box

Let W^m denote the sum of the weights of all trees at time m.

Lemma 4. $W^m = \frac{4}{\pi} \Phi^m - (|P| - m)\ell^m$.

Proof. We induct on m. For the base case, m = 0, the spanning tree consists of no edges and all points are disconnected. Consequently, $W^0 = 0$, $\Phi^0 = 0$, and $\ell^0 = 0$. Assume that the statement holds for W^m . We will prove that it holds for W^{m+1} .

Because e_{m+1} is the edge added at step m+1, we start with $W^{m+1} = W^m + \ell^{m+1}$. By the induction hypothesis, we substitute W^m to obtain $\frac{4}{\pi}\Phi^m - (|P| - m)\ell^m + \ell^{m+1}$. By substitution, using Lemma 3, this equals $\frac{4}{\pi}\Phi^{m+1} - (|P| - m)\ell^{m+1} + \ell^{m+1}$. Simple rearranging yields the claimed result.

Lemma 5. Let d denote $|e_M|$. If $d \leq \frac{1}{2}$, $\Phi^M \leq 2d + \frac{\pi d^2}{4} + 1$. Otherwise, $\Phi^M \leq d^2\sqrt{3} - \frac{1}{\sqrt{3}} + \frac{5\pi d^2}{12} + 4(d-d^2) + 1$.

Proof. In Figure 1, we depict a region R that we claim covers A^M . For every point x on each edge e of the square, define a circle of radius $\min\{\frac{d}{2}, \frac{f}{2}\}$, where f is the distance from x to the farther endpoint of e.

This circle is meant to represent a specific radius of the growing circle that corresponds to e_m as the algorithm progresses. If x were a point in P, then its circle would intersect the equivalent growing circles centered on the endpoints of e. Therefore x would no longer be on the convex hull of its component, after the two endpoints join. This would further imply that no sector of x could keep expanding. We define R to be the union of all such circles centered on the boundary of the square, together with the square region itself. This represents an upper bound on the region that A^M can occupy, as the extreme case occurs when points in P are located on the boundary of the square.

It remains to show that R cannot grow any more on account of points of P inside the square. Suppose that an interior point y grows some sector $C^m(y)$ that contributes towards Φ^M outside R. Without loss of generality let this extra contribution be closest to the top edge e of the square. Just like above, $C^{M}(y)$ can only grow above e if y is part of the upper hull of t_y^m and that cannot happen if y is in the same component as both endpoints of e. Let x be the orthogonal projection of y on e and assume without loss of generality that the endpoint of e farthest to y is the right endpoint r. Therefore the endpoint of e farthest to x is also r. Furthermore, the midpoints of \overline{xr} and \overline{yr} have the same x-coordinate. Therefore, the portion of $C^{M}(y)$ above e is contained in the circle of radius $\min\{\frac{d}{2}, \frac{f}{2}\}$ centered at x, which contradicts the assumption. All that remains is to calculate the area of R. This can be done algebraically but details are omitted from this version. \square

Theorem 6. For any set of points P in the unit square, $W(P) \leq \frac{3\sqrt{3}+4}{\pi} - \frac{1}{\pi\sqrt{3}} + \frac{2}{3} \approx 3.4101.$

Proof. From Lemma 1, we can assume that P includes the corners of its enclosing unit square. $W^M = W(P)$, and by Lemma 4 is equal to $\frac{4}{\pi} \Phi^M - \ell^M$. This in turn is bounded in terms of d in Lemma 5. Combining, we obtain the following upper bounds on W(P) in terms of d: $\frac{4d^2\sqrt{3}+16(d-d^2)+4}{\pi} - \frac{4}{\pi\sqrt{3}} + \frac{5d^2}{3} - d^2$ when d > 0.5 and $\frac{8d-4}{\pi}$ for $d \leq 0.5$. This function is monotonically increasing for $0 \leq d \leq 1$, so substituting d = 1 and simplifying gives the claimed bound. \Box

References

- M. W. Bern and D. Eppstein. Worst-case bounds for subadditive geometric graphs. In Symposium on Computational Geometry, pages 183–188, 1993.
- [2] E. N. Gilbert and H. O. Pollack. Steiner minimal trees. SIAM Journal in Applied Mathematics, 16(1):1–29, 1968.
- [3] D. B. West. http://www.math.uiuc.edu/~west/ regs/mstsq.html.