Sum of Squared Edges for MST of a Point Set in a Unit Square

Oswin Aichholzer*

Prosenjit Bose’

Sarah R. Allenf*
Jean-Lou De Carufel!

Greg Aloupis® Luis Barba¥$

John Iaconot Stefan Langerman®

Diane L. Souvaine!

1 Introduction

Let the weight of a tree be the sum of the squares
of its edge lengths. Given a set of points P in the
unit square let W(P) be weight of the minimum
spanning tree of P. If P is simply the four corners of
the square, then W(P) = 3. Gilbert and Pollack [2]
demonstrated that W(P) = O(1) and this was
extended to an arbitrary number of dimensions by
Bern and Eppstein [1]. While more recent divide-
and-conquer approaches have shown that W(P) < 4,
no point sets are known with W (P) > 3, and hence
it has been widely conjectured (e.g. see [3]) that
W (P) < 3. Here we show that W(P) < 3.411.

For a point set P in a unit square, MST (P) denotes
a minimum spanning tree of P. Let MST(P) denote
the subgraph of MST(P) in which all edges of length
greater than k have been removed from MST(P). For
any given point X € P, define MSTy (X, P) to be the
connected component of MST(P) containing X. Let
B be the corners of the unit square.

Lemma 1. W(P) < W(P UH).

Lemma 2. No edge in MST(P U B) has length
greater than 1.

2 Result

By Lemma 1 it suffices to consider only point sets
that include the corners of an enclosing unit square.
Kruskal’s MST construction algorithm considers all
edges defined by P in sorted order. When an edge is
considered, it is added to the existing graph only if it
doesn’t create a cycle. Let e, be the m*™ edge added.
At step m = 0 no edges have been added and at step
m=|P|—1=: M, MST(P) is complete.
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At each step of Kruskal’s algorithm, each con-
nected component of edges is a tree. We define t%
to be the tree at step m that contains point X. It
helps to initialize the algorithm at m = 0 by let-
ting every point X of P be a singular tree t$ that is
augmented when X is an endpoint of an edge that
is added. We also initialize ey = 0. Notice that
t% = MST., (X, P). Let CH(t) denote the vertices
of the convex hull of a tree ¢t. If X is on CH(t'}), let
Z™(X) be the range of angles for which it is extreme.
We set Z9(X) = [0°,360°]. Over time this range of
angles is reduced, and may have size 0 if X is no
longer on the hull. At any time m, for any given con-
nected component Z, the set of all £Z™(X) for each
point X € Z partitions the angle range [0, 360].

With this in place we define the region C™(X).
If at time m, X is on CH(t}) and extreme in some
range [, ] = £™(X) then C™(X) is the sector of a

lem |

circle centered at X, with radius and spanning
the angle range [a, 8]. If X is not on the hull of ¢¢,
then C™(X) is empty. Let C*™(X) be the union of
all the sectors that X has defined up to step m; that
is C"™(X) = UL CH(X).

For a tree t'¢, we define the region A’} as follows.
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A%} is contained in the union of discs of radius =5
centered on all points of P in the same component
as X. Points in different components have distance
greater than |e,,|, otherwise an edge between them
would have already been added. Thus if A%} and Ay
are different, then they are disjoint. Let A™ denote
union of all these regions and let ®™ denote the area
of all such regions defined at time m.

At time m, there are |P| — m trees. Recall that
points of P not yet joined to other points are also
considered to be trees. Let £™ = |e,,|%.

Lemma 3. ! = &™ + Z(|P| —m)({™ ! — ™).

Proof. At time m, each point X on CH(t%}) has a
sector C™(X) with radius L5n| = Y From our

definition of C™(X), the sectors of all points on the



Figure 1: Depiction of R for d € {0.3,0.6,0.7,1.0}.
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convex hull of % partition a circle of radius Y5—,

which has area Z£“. From step m to m + 1, the
radius of each of these sectors increases to ¥ W;H and

the total area of the partitioned circle increases to
=" There are |P| — m trees that each have this
growth, and whose regions are disjoint, so multiplying
the difference Z(¢™*! — ¢™) from each tree by the
number of trees, |P| —m, gives the result. O

Let W™ denote the sum of the weights of all trees
at time m.

Lemma 4. W™ = 2™ — (|P| — m){™.

Proof. We induct on m. For the base case, m = 0,
the spanning tree consists of no edges and all points
are disconnected. Consequently, W° = 0, ®° = 0,
and /° = 0. Assume that the statement holds for
W™, We will prove that it holds for W™+1,
Because e;,11 is the edge added at step m-+1,
we start with W™+l = Wm 4 ¢m+1 By the in-
duction hypothesis, we substitute W™ to obtain
2™ — (|P| — m)™ 4 ¢m+1. By substitution, using
Lemma 3, this equals @™ ! —(|P|—m)emt14m+1,
Simple rearranging yields the claimed result. O

Lemma 5. Let d denote ley|. If d < 5, @M <
2d + ”Td’z + 1. Otherwise, ®M < d?/3 — % + 571“52 +
4(d —d?) + 1.

Proof. In Figure 1, we depict a region R that we claim
covers AM. For every point z on each edge e of the
square, define a circle of radius min{%, %}, where f
is the distance from x to the farther endpoint of e.

This circle is meant to represent a specific radius of
the growing circle that corresponds to e,, as the al-
gorithm progresses. If z were a point in P, then its
circle would intersect the equivalent growing circles
centered on the endpoints of e. Therefore x would
no longer be on the convex hull of its component, af-
ter the two endpoints join. This would further imply
that no sector of x could keep expanding. We define
R to be the union of all such circles centered on the
boundary of the square, together with the square re-
gion itself. This represents an upper bound on the
region that AM can occupy, as the extreme case oc-
curs when points in P are located on the boundary
of the square.

It remains to show that R cannot grow any more
on account of points of P inside the square. Suppose
that an interior point y grows some sector C™ (y) that
contributes towards ® outside R. Without loss of
generality let this extra contribution be closest to the
top edge e of the square. Just like above, CM (y) can
only grow above e if y is part of the upper hull of ¢
and that cannot happen if y is in the same compo-
nent as both endpoints of e. Let = be the orthogonal
projection of y on e and assume without loss of gen-
erality that the endpoint of e farthest to y is the right
endpoint r. Therefore the endpoint of e farthest to
x is also r. Furthermore, the midpoints of Zr and yr
have the same x-coordinate. Therefore, the portion
of CM(y) above e is contained in the circle of radius
min{%, L} centered at z, which contradicts the as-
sumption. All that remains is to calculate the area
of R. This can be done algebraically but details are
omitted from this version. O

Theorem 6. For any set of points P in the unit
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square, W (P) < === — —5 T3~ 34101

Proof. From Lemma 1, we can assume that P in-
cludes the corners of its enclosing unit square. W =
W(P), and by Lemma 4 is equal to 2@ — ¢M_ This
in turn is bounded in terms of d in Lemma 5. Combin-
ing, we obtain the following upper bounds on W (P)
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in terms of d: ACVEHI6(W—d)+d 4 52 2 gpen
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d > 0.5 and % for d < 0.5. This function is mono-
tonically increasing for 0 < d < 1, so substituting
d =1 and simplifying gives the claimed bound. [
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