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1 Introduction

Let the weight of a tree be the sum of the squares
of its edge lengths. Given a set of points P in the
unit square let W (P ) be weight of the minimum
spanning tree of P . If P is simply the four corners of
the square, then W (P ) = 3. Gilbert and Pollack [2]
demonstrated that W (P ) = O(1) and this was
extended to an arbitrary number of dimensions by
Bern and Eppstein [1]. While more recent divide-
and-conquer approaches have shown that W (P ) ≤ 4,
no point sets are known with W (P ) > 3, and hence
it has been widely conjectured (e.g. see [3]) that
W (P ) ≤ 3. Here we show that W (P ) < 3.411.

For a point set P in a unit square, MST (P ) denotes
a minimum spanning tree of P . Let MST k(P ) denote
the subgraph of MST (P ) in which all edges of length
greater than k have been removed from MST (P ). For
any given point X ∈ P , define MSTk (X,P ) to be the
connected component of MST k(P ) containingX. Let
� be the corners of the unit square.

Lemma 1. W (P ) ≤W (P ∪�).

Lemma 2. No edge in MST (P ∪ �) has length
greater than 1.

2 Result

By Lemma 1 it suffices to consider only point sets
that include the corners of an enclosing unit square.

Kruskal’s MST construction algorithm considers all
edges defined by P in sorted order. When an edge is
considered, it is added to the existing graph only if it
doesn’t create a cycle. Let em be the mth edge added.
At step m = 0 no edges have been added and at step
m = |P | − 1 =: M , MST (P ) is complete.
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At each step of Kruskal’s algorithm, each con-
nected component of edges is a tree. We define tmX
to be the tree at step m that contains point X. It
helps to initialize the algorithm at m = 0 by let-
ting every point X of P be a singular tree t0X that is
augmented when X is an endpoint of an edge that
is added. We also initialize e0 = 0. Notice that
tmX = MST|em |(X,P ). Let CH(t) denote the vertices
of the convex hull of a tree t. If X is on CH(tmX), let
∠m(X) be the range of angles for which it is extreme.
We set ∠0(X) = [0◦, 360◦]. Over time this range of
angles is reduced, and may have size 0 if X is no
longer on the hull. At any time m, for any given con-
nected component Z, the set of all ∠m(X) for each
point X ∈ Z partitions the angle range [0, 360].

With this in place we define the region Cm(X).
If at time m, X is on CH(tmX) and extreme in some
range [α, β] = ∠m(X) then Cm(X) is the sector of a

circle centered at X, with radius |em|2 and spanning
the angle range [α, β]. If X is not on the hull of tmX ,
then Cm(X) is empty. Let C∗m(X) be the union of
all the sectors that X has defined up to step m; that
is C∗m(X) = ∪mµ=0C

µ(X).
For a tree tmX , we define the region AmX as follows.

AmX =
⋃
Y ∈tmX

C∗m(Y ).

AmX is contained in the union of discs of radius |em|2
centered on all points of P in the same component
as X. Points in different components have distance
greater than |em|, otherwise an edge between them
would have already been added. Thus if AmX and AmY
are different, then they are disjoint. Let Am denote
union of all these regions and let Φm denote the area
of all such regions defined at time m.

At time m, there are |P | − m trees. Recall that
points of P not yet joined to other points are also
considered to be trees. Let `m = |em|2.

Lemma 3. Φm+1 = Φm + π
4 (|P | −m)(`m+1 − `m).

Proof. At time m, each point X on CH(tmX) has a

sector Cm(X) with radius |em|2 =
√
`m

2 . From our
definition of Cm(X), the sectors of all points on the



Figure 1: Depiction of R for d ∈ {0.3, 0.6, 0.7, 1.0}.

convex hull of tmX partition a circle of radius
√
`m

2 ,

which has area π`m

4 . From step m to m + 1, the

radius of each of these sectors increases to
√
`m+1

2 and
the total area of the partitioned circle increases to
π`m+1

4 . There are |P | −m trees that each have this
growth, and whose regions are disjoint, so multiplying
the difference π

4 (`m+1 − `m) from each tree by the
number of trees, |P | −m, gives the result.

Let Wm denote the sum of the weights of all trees
at time m.

Lemma 4. Wm = 4
πΦm − (|P | −m)`m.

Proof. We induct on m. For the base case, m = 0,
the spanning tree consists of no edges and all points
are disconnected. Consequently, W 0 = 0, Φ0 = 0,
and `0 = 0. Assume that the statement holds for
Wm. We will prove that it holds for Wm+1.

Because em+1 is the edge added at step m+1,
we start with Wm+1 = Wm + `m+1. By the in-
duction hypothesis, we substitute Wm to obtain
4
πΦm − (|P | −m)`m + `m+1. By substitution, using
Lemma 3, this equals 4

πΦm+1−(|P |−m)`m+1+`m+1.
Simple rearranging yields the claimed result.

Lemma 5. Let d denote |eM |. If d ≤ 1
2 , ΦM ≤

2d+ πd2

4 + 1. Otherwise, ΦM ≤ d2
√

3− 1√
3

+ 5πd2

12 +

4(d− d2) + 1.

Proof. In Figure 1, we depict a regionR that we claim
covers AM . For every point x on each edge e of the
square, define a circle of radius min{d2 ,

f
2 }, where f

is the distance from x to the farther endpoint of e.

This circle is meant to represent a specific radius of
the growing circle that corresponds to em as the al-
gorithm progresses. If x were a point in P , then its
circle would intersect the equivalent growing circles
centered on the endpoints of e. Therefore x would
no longer be on the convex hull of its component, af-
ter the two endpoints join. This would further imply
that no sector of x could keep expanding. We define
R to be the union of all such circles centered on the
boundary of the square, together with the square re-
gion itself. This represents an upper bound on the
region that AM can occupy, as the extreme case oc-
curs when points in P are located on the boundary
of the square.

It remains to show that R cannot grow any more
on account of points of P inside the square. Suppose
that an interior point y grows some sector Cm(y) that
contributes towards ΦM outside R. Without loss of
generality let this extra contribution be closest to the
top edge e of the square. Just like above, CM (y) can
only grow above e if y is part of the upper hull of tmy
and that cannot happen if y is in the same compo-
nent as both endpoints of e. Let x be the orthogonal
projection of y on e and assume without loss of gen-
erality that the endpoint of e farthest to y is the right
endpoint r. Therefore the endpoint of e farthest to
x is also r. Furthermore, the midpoints of xr and yr
have the same x-coordinate. Therefore, the portion
of CM (y) above e is contained in the circle of radius
min{d2 ,

f
2 } centered at x, which contradicts the as-

sumption. All that remains is to calculate the area
of R. This can be done algebraically but details are
omitted from this version.

Theorem 6. For any set of points P in the unit

square, W (P ) ≤ 3
√
3+4
π − 1

π
√
3

+ 2
3 ≈ 3.4101.

Proof. From Lemma 1, we can assume that P in-
cludes the corners of its enclosing unit square. WM =
W (P ), and by Lemma 4 is equal to 4

πΦM − `M . This
in turn is bounded in terms of d in Lemma 5. Combin-
ing, we obtain the following upper bounds on W (P )

in terms of d: 4d2
√
3+16(d−d2)+4

π − 4
π
√
3

+ 5d2

3 −d
2 when

d > 0.5 and 8d−4
π for d ≤ 0.5. This function is mono-

tonically increasing for 0 ≤ d ≤ 1, so substituting
d = 1 and simplifying gives the claimed bound.
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