Packing disks that touch the boundary of a square

Adrian Dumitrescu*

Abstract. It is is shown that the total perimeter of n pair-
wise disjoint disks lying in the unit square U = [0,1]? and
touching the boundary of U is O(logn), and this bound is
the best possible.

1 Introduction

Given a collection of geometric objects O, and a con-
tainer U C R?, a packing is a finite set of translates
of objects from O that are pairwise disjoint and lie in
the container C. Extremal properties of packings (e.g.,
the densest packing of unit balls) are classical problems
in discrete geometry. We consider a new variant of the
problem related to TSP with neighborhoods (T'SPN).

In the PFuclidean Traveling Salesman Problem
(ETSP), given a set S of n points in R, we wish to find
closed polygonal chain (tour) of minimum Euclidean
length whose vertex set is S. The Euclidean TSP is
known to be NP-hard, but it admits a PTAS in R2. In
the TSP with Neighborhoods (TSPN), given a set of n
sets (neighborhoods) in R, we wish to find a closed
polygonal chain of minimum Euclidean length that has
a vertex in each neighborhood. The neighborhoods are
typically simple geometric objects such as disks, poly-
gons, line segments, or lines. TSPN is also NP-hard; it
admits a PTAS for certain types of neighborhoods [5],
but is hard to approximate for others [1].

For n connected (possibly overlapping) neighbor-
hoods in the plane, TSPN can be approximated with
ratio O(log n) by the algorithm of Mata and Mitchell [4].
At its core, the O(logn)-approximation relies on the fol-
lowing early result by Levcopoulos and Lingas [3]: ev-
ery (simple) rectilinear polygon P with n vertices, r of
which are reflex, can be partitioned into rectangles of
total perimeter per(P)logr in O(nlogn) time.

One approach to approximate TSPN (in particular, it
achieves a constant-ratio approximation for unit disks)
is the following. Given a set S of n neighborhoods, com-
pute a maximal subset I C S of pairwise disjoint neigh-
borhoods (i.e., an independent set), compute a good
tour for I, and then augment it by traversing the bound-
ary of each set in I. Since each neighborhood in S\ I
intersects some neighborhood in I, the augmented tour
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visits all objects in S. This approach is particularly ap-
pealing since good approximation algorithms are often
available for pairwise disjoint neighborhoods [5]. The
bottleneck of this approach is extending a tour of I by
the total perimeter of the objects in I. This lead us to
the following problem [2] (see Fig. 1):
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Figure 1: A packing of disks in a rectangle, with all disks
touching the boundary.

Given a simple polygonal domain P in the plane and
n disjoint disks lying in P and touching the boundary
of P, what is the maximum ratio of the total perimeter
of the disks and the perimeter of P? We address this
problem in the simple setting where P is a unit square.

Theorem 1 The total perimeter of n pairwise disjoint
disks lying in the unit square U = [0,1]? and touching
the boundary of U is O(logn). Apart from the constant
factor, this bound is the best possible.

2 Proof of Theorem 1

It is enough to bound the total diameter of n disks.

Upper bound. Let S be a set n disjoint disks in the
unit square U = [0, 1]? that touch the bottom side of
U. Shrink each disk D € S by a factor p € (3,1] from
its common point with the z-axis such that its radius
becomes 1/2% for some integer ¥ € N. The disks re-
main disjoint, they still touch the bottom side of U,
and each radius decreases by a factor of at most 2. Par-
tition the resulting disks into subsets as follows. For
i=1,...,[logyn], let S; denote the set of disks of ra-
dius 1/2% and let Sp be the set of disks of radius less
than 1/n. The sum of diameters of the disks in S,



i = 1,...,|logyn], is at most 1, since their horizon-
tal diametrical segments are collinear and disjoint. The
sum of diameters of the disks in Sy is at most 2 since
there are at most n disks altogether. Hence the sum of
diameters of all original disks is at most 2(2+ |logy ),
as required.

Lower bound construction. We conbtruct a pack-
ing of O(n) disks in the unit square [—31, 3] x [0, 1] such
that every disk touches the x-axis, and the sum of their
diameters is Q(logn). To each disk we associate its ver-
tical projection interval (on the z-axis). The algorithm
greedily chooses disks of monotonically decreasing radii
such that (1) every diameter is 1/16* for some k € Ny;
and (2) if the projection intervals of two disks overlap,
then one interval contains the other.

For k = 0,1,...,|log;sn], denote by Sy the set of
disks of diameter 1/16%, constructed by our algorithm.
We recursively allocate a set Xj, C [—3, 1] to Sy, and
then choose disks in Sg such that thelr projections inter-
vals lie in Xj. Initially, Xo = [—2 5 2] and Sy contains
the disk of diameter 1 inscribed in [—3, 4] x [0,1]. The
length of each maximal interval I C X will be a multi-
ple of 1/16*, so I can be covered by projection intervals
of interior-disjoint disks of diameter 1/16* touching the
zr-axis. Every interval I C X will have the property
that any disk of diameter 1/16* whose projection in-
terval is in I is disjoint from any (larger) disk in S,
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Figure 2: Disk @) and the exponentially decreasing pairs of
intervals I (Q), k=1,2,....

Consider the disk @ of diameter 1, centered at (0, %),
and tangent to the z-axis (see Fig. 2). It can be easily
verified that: (i) the locus of centers of disks tangent
to both @ and the z-axis is the parabola y = %xz; and
(ii) any disk of diameter 1/16 and tangent to the z-axis
whose projection interval is in I3 (Q) = [-3, — 3] U[5, 3]
is disjoint from . Similarly, for all £ € N, any disk of
diameter 1/16* and tangent to the 2-axis whose projec-
tion interval is in [,(Q) = [~ 35, —5err) U (301, 5F) 18
disjoint from Q). For an arbitrary disk D tangent to the
z-axis, and an integer k > 1, denote by I;(D) C [-1, 3]
the pair of intervals corresponding to I (Q); for k = 0,
I, (D) consists of only one interval.

We can now recursively allocate intervals in X and
choose disks in Sk (k: =0,1,...,|log;sn]) as follows.

Recall that Xo = [—1, 1], and Sy contains a single disk
of unit diameter inscribed in the unit square [—3, 1] x

[0,1]. Assume that we have already defined the intervals
in Xx_1, and selected disks in Sip_i. Let X, be the
union of the interval pairs Ij,_;(D) for all D € S; and
j=0,1,...,k—1. Place the maximum number of disks
of diameter 1/16* into S; such that their projection
intervals are contained in X. For a disk D € S; (j =
0,1,...,k — 1) of diameter 1/163 the two 1ntervals in
1 gh—d

Xi—j each have length 5 Qk 7T = e 16’“

can each accommodate the projection intervals of
disks in Sj.

We prove by induction on k that the length of X} is
and so the sum of the diameters of the disks i 1n Sk
1, k=12, |loggn|. The interval Xo = [—3, 1]
has length 1. The pair of intervals X; = [f%, -3l U
[1,1] has length 1. For k =2,..., [logsn], the set X
consists of two types of (dlSJOlIlt) 1ntervals: (a) The pair
of intervals I; (D) for every D € Sj,_1 covers half of the
projection interval of D. Over all D € Si_1, they jointly
cover half the length of Xj_;1. (b) Each pair of intervals
I—j(D) for D € Sx—j, j =0,...,k — 2, has half the
length of I;_;_1(D). So the sum of the lengths of these
intervals is half the length of X _1; although they are
disjoint from Xj_;. Altogether, the sum of lengths of
all intervals in X} is the same as the length of Xj_;.

By induction, the length of X;_1 is 5, hence the length
of X}, is also & 5, as claimed. This 1mmedlately implies

that the sum of diameters of the disks in UUOg16 n Sk

is 1+ 1|logygn]. Finally, one can verify that the total
number of disks used is O(n). Write a = |loggn].
Indeed, |So| = 1, and |Sy| = |Xx|/167% = 16%/2, for
k = 1,...,a, where |Xg| denotes the total length of
the intervals in Xj,. Consequently, |So| + > ¢_; |Sk| =
O(16%) = O(n), as required.

SO they
8"
2

2’

References

[1] M. de Berg, J. Gudmundsson, M. J. Katz, C. Levcopou-
los, M. H. Overmars, and A. F. van der Stappen, TSP
with neighborhoods of varying size, J. of Algorithms,
57(1) (2005), 22-36.

[2] A. Dumitrescu and C D. Téth, The traveling salesman
problem for lines, balls and planes, Proc. 24th SODA,
2013, SIAM, to appear.

[3] C. Levcopoulos and A. Lingas, Bounds on the length
of convex partitions of polygons, Proc. 4th FST-TCS,
vol. 181 of LNCS, 1984, Springer, pp. 279-295.

[4] C. Mata and J. S. B. Mitchell, Approximation algo-
rithms for geometric tour and network design problems,
Proc. 11th SOCG, 1995, ACM, pp. 360-369.

[5] J.S.B. Mitchell, A constant-factor approximation algo-
rithm for TSP with pairwise-disjoint connected neigh-
borhoods in the plane, Proc. 26th SOCG, 2010, ACM,
183-191.



