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Abstract. It is is shown that the total perimeter of n pair-

wise disjoint disks lying in the unit square U = [0, 1]2 and

touching the boundary of U is O(logn), and this bound is

the best possible.

1 Introduction

Given a collection of geometric objects O, and a con-
tainer U ⊆ Rd, a packing is a finite set of translates
of objects from O that are pairwise disjoint and lie in
the container C. Extremal properties of packings (e.g.,
the densest packing of unit balls) are classical problems
in discrete geometry. We consider a new variant of the
problem related to TSP with neighborhoods (TSPN).

In the Euclidean Traveling Salesman Problem
(ETSP), given a set S of n points in Rd, we wish to find
closed polygonal chain (tour) of minimum Euclidean
length whose vertex set is S. The Euclidean TSP is
known to be NP-hard, but it admits a PTAS in R2. In
the TSP with Neighborhoods (TSPN), given a set of n
sets (neighborhoods) in Rd, we wish to find a closed
polygonal chain of minimum Euclidean length that has
a vertex in each neighborhood. The neighborhoods are
typically simple geometric objects such as disks, poly-
gons, line segments, or lines. TSPN is also NP-hard; it
admits a PTAS for certain types of neighborhoods [5],
but is hard to approximate for others [1].

For n connected (possibly overlapping) neighbor-
hoods in the plane, TSPN can be approximated with
ratio O(log n) by the algorithm of Mata and Mitchell [4].
At its core, the O(log n)-approximation relies on the fol-
lowing early result by Levcopoulos and Lingas [3]: ev-
ery (simple) rectilinear polygon P with n vertices, r of
which are reflex, can be partitioned into rectangles of
total perimeter per(P ) log r in O(n log n) time.

One approach to approximate TSPN (in particular, it
achieves a constant-ratio approximation for unit disks)
is the following. Given a set S of n neighborhoods, com-
pute a maximal subset I ⊆ S of pairwise disjoint neigh-
borhoods (i.e., an independent set), compute a good
tour for I, and then augment it by traversing the bound-
ary of each set in I. Since each neighborhood in S \ I
intersects some neighborhood in I, the augmented tour
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visits all objects in S. This approach is particularly ap-
pealing since good approximation algorithms are often
available for pairwise disjoint neighborhoods [5]. The
bottleneck of this approach is extending a tour of I by
the total perimeter of the objects in I. This lead us to
the following problem [2] (see Fig. 1):

Figure 1: A packing of disks in a rectangle, with all disks
touching the boundary.

Given a simple polygonal domain P in the plane and
n disjoint disks lying in P and touching the boundary
of P , what is the maximum ratio of the total perimeter
of the disks and the perimeter of P? We address this
problem in the simple setting where P is a unit square.

Theorem 1 The total perimeter of n pairwise disjoint
disks lying in the unit square U = [0, 1]2 and touching
the boundary of U is O(log n). Apart from the constant
factor, this bound is the best possible.

2 Proof of Theorem 1

It is enough to bound the total diameter of n disks.

Upper bound. Let S be a set n disjoint disks in the
unit square U = [0, 1]2 that touch the bottom side of
U . Shrink each disk D ∈ S by a factor ρ ∈ ( 1

2 , 1] from
its common point with the x-axis such that its radius
becomes 1/2k for some integer k ∈ N. The disks re-
main disjoint, they still touch the bottom side of U ,
and each radius decreases by a factor of at most 2. Par-
tition the resulting disks into subsets as follows. For
i = 1, . . . , blog2 nc, let Si denote the set of disks of ra-
dius 1/2i; and let S0 be the set of disks of radius less
than 1/n. The sum of diameters of the disks in Si,



i = 1, . . . , blog2 nc, is at most 1, since their horizon-
tal diametrical segments are collinear and disjoint. The
sum of diameters of the disks in S0 is at most 2 since
there are at most n disks altogether. Hence the sum of
diameters of all original disks is at most 2(2 + blog2 nc),
as required.

Lower bound construction. We construct a pack-
ing of O(n) disks in the unit square [− 1

2 ,
1
2 ]× [0, 1] such

that every disk touches the x-axis, and the sum of their
diameters is Ω(log n). To each disk we associate its ver-
tical projection interval (on the x-axis). The algorithm
greedily chooses disks of monotonically decreasing radii
such that (1) every diameter is 1/16k for some k ∈ N0;
and (2) if the projection intervals of two disks overlap,
then one interval contains the other.

For k = 0, 1, . . . , blog16 nc, denote by Sk the set of
disks of diameter 1/16k, constructed by our algorithm.
We recursively allocate a set Xk ⊂ [− 1

2 ,
1
2 ] to Sk, and

then choose disks in Sk such that their projections inter-
vals lie in Xk. Initially, X0 = [− 1

2 ,
1
2 ], and S0 contains

the disk of diameter 1 inscribed in [− 1
2 ,

1
2 ]× [0, 1]. The

length of each maximal interval I ⊆ Xk will be a multi-
ple of 1/16k, so I can be covered by projection intervals
of interior-disjoint disks of diameter 1/16k touching the
x-axis. Every interval I ⊆ Xk will have the property
that any disk of diameter 1/16k whose projection in-
terval is in I is disjoint from any (larger) disk in Sj ,
j < k.
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Figure 2: Disk Q and the exponentially decreasing pairs of
intervals Ik(Q), k = 1, 2, . . ..

Consider the disk Q of diameter 1, centered at (0, 12 ),
and tangent to the x-axis (see Fig. 2). It can be easily
verified that: (i) the locus of centers of disks tangent
to both Q and the x-axis is the parabola y = 1

2x
2; and

(ii) any disk of diameter 1/16 and tangent to the x-axis
whose projection interval is in I1(Q) = [− 1

2 ,− 1
4 ]∪ [ 14 ,

1
2 ]

is disjoint from Q. Similarly, for all k ∈ N, any disk of
diameter 1/16k and tangent to the x-axis whose projec-
tion interval is in Ik(Q) = [− 1

2k
,− 1

2k+1 ] ∪ [ 1
2k+1 ,

1
2k

] is
disjoint from Q. For an arbitrary disk D tangent to the
x-axis, and an integer k ≥ 1, denote by Ik(D) ⊆ [− 1

2 ,
1
2 ]

the pair of intervals corresponding to Ik(Q); for k = 0,
Ik(D) consists of only one interval.

We can now recursively allocate intervals in Xk and
choose disks in Sk (k = 0, 1, . . . , blog16 nc) as follows.
Recall that X0 = [− 1

2 ,
1
2 ], and S0 contains a single disk

of unit diameter inscribed in the unit square [− 1
2 ,

1
2 ] ×

[0, 1]. Assume that we have already defined the intervals
in Xk−1, and selected disks in Sk−1. Let Xk be the
union of the interval pairs Ik−j(D) for all D ∈ Sj and
j = 0, 1, . . . , k−1. Place the maximum number of disks
of diameter 1/16k into Sk such that their projection
intervals are contained in Xk. For a disk D ∈ Sj (j =
0, 1, . . . , k − 1) of diameter 1/16j , the two intervals in

Xk−j each have length 1
2 · 1

2k−j · 1
16j = 8k−j

2 · 1
16k

, so they

can each accommodate the projection intervals of 8k−j

2
disks in Sk.

We prove by induction on k that the length of Xk is
1
2 , and so the sum of the diameters of the disks in Sk

is 1
2 , k = 1, 2, . . . , blog16 nc. The interval X0 = [− 1

2 ,
1
2 ]

has length 1. The pair of intervals X1 = [− 1
2 ,− 1

4 ] ∪
[ 14 ,

1
2 ] has length 1

2 . For k = 2, . . . , blog16 nc, the set Xk

consists of two types of (disjoint) intervals: (a) The pair
of intervals I1(D) for every D ∈ Sk−1 covers half of the
projection interval of D. Over all D ∈ Sk−1, they jointly
cover half the length of Xk−1. (b) Each pair of intervals
Ik−j(D) for D ∈ Sk−j , j = 0, . . . , k − 2, has half the
length of Ik−j−1(D). So the sum of the lengths of these
intervals is half the length of Xk−1; although they are
disjoint from Xk−1. Altogether, the sum of lengths of
all intervals in Xk is the same as the length of Xk−1.
By induction, the length of Xk−1 is 1

2 , hence the length
of Xk is also 1

2 , as claimed. This immediately implies

that the sum of diameters of the disks in
⋃blog16 nc

k=0 Sk

is 1 + 1
2blog16 nc. Finally, one can verify that the total

number of disks used is O(n). Write a = blog16 nc.
Indeed, |S0| = 1, and |Sk| = |Xk|/16−k = 16k/2, for
k = 1, . . . , a, where |Xk| denotes the total length of
the intervals in Xk. Consequently, |S0| +

∑a
k=1 |Sk| =

O(16k) = O(n), as required.
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