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1 Introduction

The medial axis of an object is a skeletal structure
originally defined by Blum [1]. Formally, the medial
axis of an object is the set of points having more
than one closest point on the boundary of the object;
alternatively, it can also be thought of as the set of
centers of discs with maximal size that fit within the
object, or in a variety of other ways. The medial axis
is centered within the object, homology equivalent to
the object if it is an open bounded subset of Rn [4],
and (at least) one dimension lower than that of the
object. These properties make the medial axis ideal
for many applications including shape analysis and
robotic path planning.

We are interested in defining a similar skeletal
structure on a surface S that inherits the properties
of the medial axis. Such a structure could then be
used for applications such as shape analysis of sur-
face patches as well as path planning in non-planar
domains. We are particularly interested in piece-
wise smooth surfaces, which are more representative
of typical outputs of discrete surface reconstruction
algorithms (e.g., triangulated meshes) than globally
smooth surfaces.

A natural approach would be to replace the Eu-
clidean distances in the medial axis definition by
geodesic distances over S. Indeed, Wolter [8] defines
the geodesic medial axis on a smooth Riemannian
manifold as the centers of geodesic discs with maxi-
mal size that fit in S. Interestingly, when S is only
piecewise smooth, such an approach is not sufficient.
Various definitions of the medial axis which are equiv-
alent in Rn may not yield the same structure on S,
and none of these structures guarantees the essential
properties of the medial axis (being low-dimensional
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and homotopy preserving).
In this paper, we propose a new skeleton defini-

tion on a piecewise linear surface S, which we call
the medial residue, and prove that the structure is a
finite curve network that is homotopy equivalent to
S. When S is a planar domain, the medial residue is
equivalent to the medial axis, and so it is a natural
extension of the medial axis onto surfaces. We also
develop an efficient algorithm to compute the medial
residue on a triangulated mesh, which builds on prior
work to compute geodesic distances [5, 6].

2 The medial residue

Let S be a piecewise linear surface in R3. We first
consider the set of points on S that do not have a
unique direction for shortest geodesic paths to ∂S,
denoted MSPD. Note that MSPD reduces to the
medial axis when S has no curvature. It is also not
difficult to show that MSPD is always a finite curve
network. However, MSPD may not preserve the ho-
motopy of S around non-smooth, concave vertices
(where the accumulative angle around the vertex is
greater than 2π). For example, consider a concave
vertex p that is in MSPD and that has a neighbor-
hood on S (which we call a shadow) such that the
shortest path from any point x in the shadow to ∂S
goes through p. Note that any point in the shadow
would have a unique shortest path direction, and
hence MSPD would avoid the entire shadow, which
can potentially cause disconnection in MSPD.

To achieve homotopy equivalence, we will add a
curve subset of the shadows at concave vertices.
While the actual geometry of these additional curve
segments does not affect the topology of our me-
dial residue, we would like these curves to be “cen-
tered”, just like the medial axis. Naturally, we con-
sider straight curves that bisect each shadow zone.
We can formalize the notion of “straight” (which was
proposed in [7]) and “bisect” as follows:

Definition 2.1. We say a curve γ is straight if for
every point p ∈ γ the left and right curve angles at p
are equal.



On a smooth surface, all geodesics are straight,
and in fact this concept is equivalent to being a
geodesic. However, on piecewise linear surfaces, there
are geodesics that are not straight and straight curves
that are not geodesic.

Definition 2.2. A curve γ bisects a piecewise dif-
ferentiable curve X at time t if γ(t) ∈ X and the two
angles bounded by γ and the tangent of X at γ(t) are
equal.

Our medial residue is simply the union of MSPD

and the straight bisectors of the shadows, or formally:

Definition 2.3. The medial residue, MR consists of
any point x ∈ S where we either have x ∈ MSPD or
where there are two distinct shortest paths from x to
the boundary, γ1 and γ2, parameterized by arc length,
which first intersect MSPD ∪ ∂S at γ1(t) = γ2(t)
such that γ1([0, t]) = γ2([0, t]) is straight and bisects
MSPD ∪ ∂S at γ1(t).

The usefulness of medial residue is reflected in the
following theorem:

Theorem 2.4. If S is a PL surface then MR is a
finite curve network homotopy equivalent to S.

3 Algorithm

Given a flat piecewise linear surface (i.e., a polyhe-
dral surface), an algorithm exists that can compute,
in O(n2 log n) time for a mesh with n edges, a sub-
division on each polyhedron face that captures the
combinatorial structure of the distance function from
a set of point sources [5, 6]. We first show that both
the complexity and the correctness of the algorithm
still hold when the point sources are replaced by edges
on the boundary of the surface. Furthermore, we
can show that the MSPD consists of a subset of arcs
and vertices in this subdivision, which can be identi-
fied in O(n2) time. Finally, the bisector curves (the
second part of MR) can be added in O(n2) time.
Hence the end-to-end complexity of computing MR
is O(n2 log n).

4 The cut residue

The medial axis has strong connections to the cut lo-
cus [9]. However, even defining the cut locus on piece-
wise linear surfaces is a challenge, since the tangent
space is not well defined on a non-smooth surface.
The most commonly used definition of the cut locus

of a point x in a non-smooth setting is the closure
of the set of points that have two distinct geodesics
to x. As with the medial axis, this definition gives
problems when applied to a piecewise smooth mani-
fold. As a result, algorithms for computing cut locus
on a triangulated mesh either uses approximation [2]
or are limited to convex surfaces [3]. By replacing ∂S
in our medial residue definition with a point source
x, we can similarly define a cut residue from x that
is equivalent to the cut locus when S is a smooth
surface. The homotopy and curve network proper-
ties in Theorem 2.4 can be shown to hold for cut
residue when S is a piecewise linear surface, and the
algorithm of medial residue can be easily adapted as
well to allow efficient and exact computation of a cut-
locus-like structure on arbitrary polyhedral surfaces.
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