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Abstract

When approximating a space curve, it is natural to con-
sider whether the knot type of the original curve is pre-
served in the approximant. This preservation is of strong
contemporary interest in computer graphics and visualiza-
tion. We establish a criterion to preserve knot type under
approximation that relies upon convergence in both dis-
tance and total curvature.
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1 Introduction

Convergence for curve approximation is often in terms
of distance, such as in Weierstrass approximation theo-
rem [11]. But an approximation in terms of distance does
not necessarily yield ambient isotopic equivalence. How-
ever, ambient isotopic equivalence is a fundamental con-
cern in knot theory, and a theoretical foundation for curve
approximation algorithms in computer graphics and visu-
alization.

So a natural question is what criterion will guarantee
ambient isotopic equivalence for curve approximation?
The answer is that, besides convergence in distance, an
additional hypothesis of total curvature will be sufficient,
that is, convergence in both distance and total curvature.

2 Related Work

The Isotopy Convergence Theorem presented here is mo-
tivated by the question about topological integrity of ge-
ometric models in computer graphics and visualization.
The publications [1, 2, 7, 9] are among the first that pro-
vided algorithms to ensure ambient isotopic approxima-
tions. The paper [6] provided existence criteria for a PL
approximation of a rational spline, but did not include any
specific algorithms.

Recent progress was made for the class of Bézier
curves, by providing stopping criteria for subdivision al-
gorithms to ensure ambient isotopic equivalence for Bézier
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curves of any degree n [4], extending the previous work of
[9], that had been restricted to degree less than 4.

This work here extends to a much broader class of
curves, piecewise C2 curves, where there is no restriction
on approximation algorithms. Because of its generality,
this pure mathematical result is potentially applicable to
both theoretical and practical areas.

3 Preliminaries

Use C to denote a compact, regular, C2, simple, para-
metric, space curve. Let {Ci}∞1 denote a sequence of
piecewise C2, parametric curves. Suppose all curves are
parametrized on [0, 1], that is, C = C(t) and Ci = Ci(t)
for t ∈ [0, 1]. Denote the sub-curve of C corresponding
to [a, b] ⊂ [0, 1] as C[a,b], and similarly use Ci[a,b] for Ci.
Denote a total curvature as Tκ(·).

The definitions [8] of total curvatures of both PL curves
and C2 curves are standard. These can be naturally ex-
tended to define total curvatures of piecewise C2 curves,
for which the concept of exterior angles [8] is needed.

Definition 3.1 (Exterior angles of piecewise C2 curves)
For a piecewise C2 curve γ(t), define the exterior angle at
some ti to be the angle between two vectors γ′(ti−) and
γ′(ti+) where

γ′(ti−) = lim
h→0

γ(ti)− γ(ti − h)

h
,

and

γ′(ti+) = lim
h→0

γ(ti + h)− γ(ti)

h
.

Definition 3.2 (Total curvatures of piecewise C2 curves)
Suppose that a piecewise C2 curve φ(t) is not C2 at
finitely many parameters t1, · · · , tn. Denote the sum of
the total curvatures of all the C2 sub-curves as Tκ1, and
the sum of exterior angles at t1, · · · , tn as Tκ2. Then the
total curvature of φ(t) is Tκ1 + Tκ2.

Definition 3.3 We say that {Ci}∞1 converges to C in dis-
tance if for any ε > 0, there exits an integer N such that
maxt∈[0,1] |Ci(t)− C(t)| < ε for all i ≥ N .

Definition 3.4 We say that {Ci}∞1 converges to C in total
curvature if for any ε > 0, there exits an integer N such
that |Tκ(Ci) − Tκ(C)| < ε for all i ≥ N . We designate
this property as convergence in total curvature.



4 Isotopy Convergence

Convergence in distance provides a lower bound of the to-
tal curvatures of approximants.

Theorem 1 If {Ci}∞1 converges to C in distance, then for
∀ε > 0, there exits an integer N such that Tκ(Ci) >
Tκ(C)− ε for all i ≥ N .

Theorem 2 (Isotopy Convergence) If {Ci}∞1 converges
to C in both distance and total curvature, then there exists
an N such that Ci is ambient isotopic to C for all i ≥ N .

Let = be a set of pairwise disjoint piecewise C2 curves,
(which is a link for closed curves), satisfying the same hy-
potheses as C. Let =i be a set of piecewise C2 parametric
curves. The corollary bellow follows easily.

Corollary 3 1 If the sequence {=i}∞1 converges to = in
both distance and total curvature, then there exists an inte-
ger N such that =i is ambient isotopic to = for all i ≥ N .

4.1 A representative example of offset curves

Offset curves are defined as locus of the points which are
at constant distant along the normal from the generator
curves [5]. They are widely used in various applications,
and the related approximation problems were frequently
studied [5]. It is well-known [10, p. 553 ] that offsets of
spline curves need not be splines. Here we show a repre-
sentative example as a catalyst to ambient isotopic approx-
imations of offset curves.

Let C(t) be a compact, regular, C2, simple, space curve
parametrized in [a, b], whose curvature κ never equals 1.
Then define an offset curve by

Ω(t) = C(t) +N(t),

where N(t) is the normal vector at t, for t ∈ [a, b].
For example, let C(t) = (2 cos t, 2 sin t, t) for t ∈

[0, 2π] be a helix, then it is an easy exercise for the reader
to verify that the above assumptions of C are satisfied, with
κ = 2

5 . Furthermore, it is straightforward to obtain the off-
set curve Ω(t) = (cos t, sin t, t), which is not a spline.

We first show that Ω(t) is regular. Let s(t) =∫ t
a
|C′(t)|dt be the arc-length of C. Then by Frenet-Serret

formulas [3] we have

Ω′(t) = C′(t) +N ′(t) = (1− κ)
ds

dt
T + τ

ds

dt
B,

where T and B are the unit tangent vector and binormal
vector respectively. Since T ⊥ B, if (1 − κ)dsdt 6= 0 then
Ω′(t) 6= 0. But (1 − κ)dsdt 6= 0 because κ 6= 1 and C(t) is
regular by the assumption. Thus Ω(t) is regular.

Now we define a sequence {Ωi(t)}∞i=1 to approximate
Ω(t) by setting

Ωi(t) = C(t) +
i− 1

i
N(t).

It is obvious that {Ωi(t)}∞i=1 converges in distance to
Ω(t). For the convergence in total curvature, note that

1We appreciate the insightful comment regarding this corollary pro-
vided by an anonymous reviewer in the committee of the 22nd Annual
Fall Workshop on Computational Geometry.

limi→∞Ω′i(t) = Ω′(t) and limi→∞ Ω′′i (t) = Ω′′(t). It
follows that

lim
i→∞

Ω′i(t)× Ω′′i (t) = Ω′(t)× Ω′′(t).

Since |Ω′(t)| 6= 0 due to the regularity of Ω(t). Therefore

lim
i→∞

Ω′i(t)× Ω′′i (t)

|Ω′i(t)|3
=

Ω′(t)× Ω′′(t)

|Ω′(t)|3
.

This implies that, at each t, the curvature in the sequence
converges to the curvature of Ω(t). Then the convergence
in total curvature follows.

By the Isotopy Convergence Theorem (Theorem 2), we
conclude that there exists a positive integer N such that
Ωi(t) is ambient isotopic to Ω(t) whenever i > N .

5 Conclusion

We derived the Isotopy Convergence Theorem as moti-
vated by applications for knot theory, computer graphics,
visualization and simulations. Future research directions
may include using the Isotopy Convergence Theorem in
knot classification and discovering applications in the area
of computational topology.
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