
Bounded Stretch Homotopic Routing Using Hyperbolic
Embedding of Sensor Networks

Kan Huang∗, Chien-Chun Ni†, Rik Sarkar‡, Jie Gao† and Joseph S. B. Mitchell∗

∗Department of Applied Mathematics and Statistics, Stony Brook University. {khuang, jsbm}@ams.stonybrook.edu
†Department of Computer Science, Stony Brook University. {chni, jgao}@cs.stonybrook.edu

‡Institut Für Informatik, Freie Universität Berlin, Germany. sarkar@inf.fu-berlin.de

In this paper we consider lightweight routing in a wireless
sensor network deployed in a complex geometric domain Σ
with holes. Our goal is to find short paths of different homotopy
types, i.e., paths that go around holes in different ways. In the
example of Figure 1, there are three holes in the network and
there are many different ways to “thread” a route from s to t.
Observe that paths α, β, γ are all different in a global sense;
in that, e.g., one cannot deform α to β without “lifting” it
over some hole. In contrast, paths γ and δ are only different in
a local manner; one can deform γ to δ continuously through
local changes, keeping δ within the domain. This difference
is characterized by the homotopy type of a path. Two paths
in a Euclidean domain are homotopy equivalent if one can
continuously deform one to the other. A set of paths that
are pairwise homotopy equivalent are said to have the same
homotopy type. The number of homotopy types is infinitely
many (assuming there is at least one hole), as a path can
loop around a hole k times, for any integer k; however, for
most routing scenarios we only care about a finite number of
homotopy types, corresponding to paths in the dual graph of a
triangulation of Σ that do not repeat triangles (and thus do not
loop around holes).
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Fig. 1. The network has 3 holes
(shaded). Paths α, β, γ have dis-
tinct homotopy types; γ and δ are
homotopy equivalent.

One heuristic algorithm gives
a heuristic path for a given case.
The ratio between the length of
the heuristic path and the length
of the optimal path is defined as
the stretch of this algorithm for
the case.

We introduce a routing frame-
work that guarantees constant
worst case stretch for a given
homotopy type. We assume that
the network is deployed in a geometric domain that is repre-
sented by a polygon Σ. We decompose the domain Σ into a
triangulation, by including certain diagonals connecting vertices
of the polygon Σ. The corners of each triangle are stored
locally, only at the nodes that are inside this triangle, along
with the corners of the (at most 3) triangles that are adjacent
to it. The dual graph of the triangulation is a planar graph D.
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Fig. 2. The solid path is the optimal path; the dashed path is the greedy path.

By removing cut edges, one per hole from D, we obtain a tree
T . We then embed the tree in the hyperbolic plane, such that
by tiling copies of the tree we obtain an infinite repeating tree
T .

We use a two-level structure in our scheme.
Level 1: Using a similar idea as in [1], we can use a greedy

algorithm to find a path in the universal covering space of D:
the tree T , with only knowledge of the triangles that contain
the source and the destination. This top-level greedy algorithm
reveals a sequence of triangles that contains the shortest path
of the required homotopy type.

Level 2: Now we have a sequence, ∆ = {41,42, · · · ,4n},
of triangles ∆i, with adjacent triangles in the sequence sharing
a common edge. We develop a greedy, local algorithm that
“navigates” inside the triangles with total travel length at most
a constant times the shortest path inside ∆. The idea is to move
through the sequence greedily, always taking the shortest path
to the boundary of the next triangle. This local algorithm does
not need to know the entire sequence of triangles but only the
current triangle and the shared diagonal with the next triangle.
The following theorem is a major technical contribution of this
paper.

Theorem 1. The length of the greedy path is at most 15π + 2
times the length of the shortest path.

Our low-level greedy routing algorithm within a sequence of
triangles can be extended to greedy routing inside a sequence of
consecutively adjacent simple polygons, with the same worst-
case stretch, as we can always further triangulate each simple



Fig. 3. The blue line is shortest path; the green line is the path used by our
algorithm.

(a) Shortest Path (b) Our algorithm

Fig. 4. In this figure, each node is represented by a circle, and the diameter of
circle is proportional to the traffic load at that node. For shortest path in 4(a),
the loads are largely around the boundary. Our Greedy routing method 4(b)
gives better load balance.

polygon. Therefore, as a bonus feature, our new algorithm can
replace the local routing scheme in the previous geometric
routing schemes that use network decompositions [3]–[5] and
provide constant stretch in the local routing part.

Here are the simulations of our algorithm in terms of the
routing stretch and load balancing. From an evaluation point of
view, we are interested in the performance of the Level 2 of
the algorithm.

Fig. 3 is a polygon domain with a hole. The stretch is 1.34.
Fig. 4 shows the traffic load distribution of the shortest path

algorithm and our algorithm.
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