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1 Introduction

There is vast amount of literature focusing on mo-
tion planning for general robots. However, the same
studies for tethered robots have not been investigated
much. While a robot navigates in an environment
with obstacles, it may meet some problems, such as
a lack of power supply, or losing its wireless com-
munication connection. If a robot is attached to a
flexible tether, it can obtain sufficient power supply
and stable communication through the tether.

Following [1], the shortest path planning problem
for a tethered robot can be described as follows. Let
E be a planar environment which consists of disjoint
polygonal obstacles of n total vertices, s be the start
point, and t be the destination point in the environ-
ment. Suppose a robot, modeled as a point, is at-
tached to an anchor point u by a tether of length L.
The initial configuration of the tether is considered
as a polyline X of k total vertices from s to u. The
goal is to find the shortest path from s to t subject
to the tether length constraint.

In this paper, we assume that (1) neither the robot
nor any part of the tether can enter the interior of any
obstacle, and (2) the robot can cross the tether, i.e.,
the tether can be self intersecting.

First, we consider two different models of the short-
est path planning problem. In the first model, the
tether is automatically retracted and is kept taut,
i.e., the tether is always the shortest path in its ho-
motopy equivalent class. In the second model, the
tether can only be retracted while the robot back-
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tracks along the tether, because the tether may be
too heavy to be dragged in some case.

Figure 1 illustrates an example of the two models.
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Figure 1: An example of finding the shortest path
for the tethered robot. Pmin is the shortest path,
and Qmin is the tether configuration after the robot
reaches t through Pmin. (left) the first model; (right)
the second model.

Furthermore, we consider the problem of finding
the shortest path for the tethered robot to visit a se-
quence of target points in order. We call this problem
the sequential monitoring problem.

Theorem 1. If the tether is automaticaly retracted,

the shortest path from the starting point s to the des-

tination point t can be computed in O(kn2 log n) time.

Theorem 2. If the tether can only be retracted while

the robot backtracks along the tether, the shortest path

from the starting point s to the destination point t can

be computed in O((k + n) log(k + n) + n2) time.

Theorem 3. The sequential monitoring problem is

NP-hard when the number of target points is O(n),
even if the initial tether length is zero, and all obsta-

cles are rectilinear polygons.

The proof of Theorem 3 is omitted in the abstract.
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2 The Algorithm

Let P be a path, we denote by P be the reverse path
of P . If the path Q starts where the path P ends, we
denote P ◦Q the concatenation of P and Q.

In the first model, the tether is automatically re-
tracted and is kept taut.

We refer to the destination point t, all bending
points on X and all obstacle points as terminals. For
a terminal v, a point c on X is an event point if v
becomes visible at c while one moves along X from
u to s. For a terminal v and an event point c, we
denote by Pc,v (or Qc,v) the shortest path homotopy
equivalent to the path which is the concatenation of
the subpath of X from s (or u) to c and line segment
(c, v), respectively. We also denote by SP (v, t) the
shortest path from s to t. Figure 2 illustrates an
example.
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Figure 2: An example of an event point. c is an event
point with respect to the terminal v. The red, blue
and green path represents Pc,v, Qc,v and SP (v, t)
respectively.

The algorithm to find the shortest path in the first
model is described in the Algorithm 1.

In the second model, the tether can only be re-
tracted while the robot backtracks along the tether.

A point on X is feasible if the robot can leave from
X at this point and arrives t subject to the tether
length constraint.

For an obstacle point v, a point c on X is a can-

didate point if v is visible from c, and the path con-
catenated by the subpath of X from s to c, (c, v) and
the shortest path from v to t has the length L.

The algorithm to find the shortest path in the sec-
ond model is described in the Algorithm 2.
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Algorithm 1: Algorithm SP1

1 Triangulate the environment E;

2 Compute H(X) and H(X) and store the funnels
associated with each triangle on the sleeve;

3 Construct the Euclidean shortest path map from t to
every terminal and compute the shortest paths;

4 foreach terminal v do

5 Partition X into a set of subpaths, such that each
subpath is concave with respect to v;

6 Compute all event points on X and associate these
points to the subpaths which contain them;

7 foreach subpath do

8 Use binary search to find the last event point c

on the subpath with the longest Qc,v subject to
that Qc,v ◦ SP (v, t) is no longer than L;

9 Compute Pc,v ◦ SP (v, t), and compare its length
with the best solution found so far. Set the best
solution to Pc,v ◦ SP (v, t) if it is shorter;

10 end

11 end

Algorithm 2: Algorithm SP2

1 Construct the Euclidean shortest path map from t to
every terminal and compute the shortest paths;

2 If s is a feasible point, directly return the path
X ◦ SP (s, t) as the shortest path;

3 Use binary search to find the line segment of X that
contains the last feasible point;

4 foreach obstacle point v do

5 Check weather there exists a candidate point with
respect to v;

6 Compare with the candidate points obtained before,
choose the point is farther to u along X;

7 end

8 Choose the path that the robot leaves from X at the best
candidate point;
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