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Abstract

An s-spanner on a set of points S in R? is a
graph on S where for every two points p,q € 5,
there exists a path between them in G that is
less than or equal to s - |pg| where |pq| is the
Euclidean distance between p and ¢. In this pa-
per we consider the construction of an Euclidean
spanner for imprecise points. In particular, we
are given in the first phase a set of circles with ra-
dius r as the imprecise positions of a set of points
and we preprocess them in O(nlogn) time. In
the second phase, the accurate positions of the
points are revealed, one point for every circle,
and we construct the (1 + ¢)-spanner in time
O(n-(r+1)*.log(r+1)). The second phase can
also be considered as an algorithm to quickly up-
date the spanner. Our algorithm does not have
any restrictions on the distribution of the points.
It is the first such algorithm with linear running
time.

1 Introduction

While in classical computational geometry all
input values are assumed to be accurate, in
the real world this assumption does not always
hold. This imprecision can be modeled in many
ways and they vary based on their applications
[6,8,10,11]. A popular model assumes that be-
fore the precise input points are known, we know
the region (lines [4], circles/balls [1,3,7,9], fat re-
gions [2,12], etc) where each point lies in.

We aim to compute a (1 + ¢)-spanner on a set
of imprecise points. In the model our algorithm

operates in, an imprecise point p is defined to be
a disk centered at a point p with radius r (which
is dependent on the distance between the closest
pair of points). The assumption is that initially,
the only information of an input point is p and
that later, the precise location of the point p (lo-
cated somewhere within p) is revealed. Given a
set of n points, an Euclidean spanner defines a
graph G on the points, each edge weighted by the
Fuclidean length, such that the shortest path be-
tween any two points u, v in the graph is at most
1 + € times the Euclidean distance of u, v.

Our algorithm preprocess a set
S = {p1,p2,...,pn} of mn imprecise
points in O(nlogn) time such that when
S = {p1,p2,...,Pn} is available, we can com-
pute a (14¢)-spanner in O(n-(r+1)*-log(r+1))
time where d is the dimension of the input. It is
important to note that our algorithm will accept
input sets with overlapping points of any depth.

2 Algorithm Definition

The algorithm we present constructs a (1 +
e)-spanner or more specifically the deformable
spanner (DEFSPANNER) as described in [5]. A
DEFSPANNER is a specific (1 4 ¢)-spanner con-
struction that is designed to be easily modified
and updated. More specifically, for a set of
points S in R?, the DEFSPANNER is made up of a
hierarchy of levels Spg, a1 € Sog,a]-1 €+ C
S; €S, C---C Sy =S8 where |S[log2a]| =1.
Any set S; is a maximal subset of S;_1 where
for any two points p,q € S;, |pg| > 2. Also,
every node p € S;_1 is assigned a parent node ¢



in the level above where |pg| < 2¢. The edges of
a DEFSPANNER G of a set S are determined by
connecting nodes within distance ¢ 2? in level i,
where ¢ = 2r + % + 4. Such nodes are called
neighbors.

In the preprocessing phase, a DEFSPANNER G
is constructed with the point set S as in [5]. The
running time is O(nlogn).

When the true positions of the points are re-
vealed, we construct a DEFSPANNER G for § by
inserting the points one by one into G. Initially,
nodes are inserted in their top-down order in é,
but the order may change as the algorithm exe-
cutes. We insert each node into the bottom level
of G if other nodes in the same level have been
inserted, otherwise a new level is added below.
For each node p that we insert into level 4, there
are three phases in our algorithm.

Step 1: Check for demotions. First, we compare
the distance between p and any of it’s neighbors
that have been already inserted into G. It any of
the distances are less than 2¢, then we demote the
node to a lower level by delaying it’s insertion.

Step 2: Find a parent. We compare the distances
between p and it’s old parent and subsequently
the old parent’s neighbors. If none of those nodes
are a suitable parent, we promote p up the hi-
erarchy and repeat our tests with it’s old grand-
parent and the old grandparent’s neighbors. We
repeat and promote p until a parent is found or p
resides at the top of G. In certain cases, instead
of testing the old parent, we compare distances
with an ancestor first or with the node that was
considered to be too close (if p was demoted).

Step 3: Find all neighbors. We compare dis-
tances with p and it’s cousins (p’s parent’s neigh-
bors’ children) in every level it resides in. We
also check to see if any of the nodes are too close
(less than 2° in level 4). In this case (which only
occurs with nodes that have been previously de-
moted in the first step), we demote the node
again.

The algorithm terminates when all nodes have
been inserted into G. The cost of preprocess-
ing is the DEFSPANNER construction cost or
O(nlogy a(r + 1/e)%) [5]. The running time of
our algorithm is O(n - (r + 1)@ - log(r + 1)).
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