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1 Overview

Clustering is one of the most fundamental problems in computer science and finds applications in
many different areas [2, 3, 5, 6, 11, 14, 15, 17, 19]. Most existing clustering techniques assume that
the to-be-clustered data items are independent from each other. Thus each data item can “freely”
determine its membership within the resulting clusters, without paying attention to the clustering
of other data items. In recent years, there are also considerable attentions on clustering dependent
data and a number of clustering techniques, such as correlation clustering, point-set clustering,
ensemble clustering, and correlation connected clustering, have been developed [3, 6, 11,14].

In this paper, we consider the following new type of clustering problems, called Chromatic
Clustering, for dependent data. Let G = {G1, · · · , Gn} be a set of n point-sets with each Gi =
{pi1, . . . , piki} consisting of ki ≤ k points in Rd space. A chromatic partition of G is a partition
of the

∑
1≤i≤n ki points into k sets, U1, · · · , Uk, such that each Ui contains no more than one

point from each Gj for j = 1, 2, · · · , n, where the dimensionality d could be very high. The
chromatic k-means clustering (or k-CMeans) of G is to find k points {m1, · · · ,mk} in Rd space
and a chromatic partition U1, · · · , Uk of G such that 1

n

∑
j

∑
q∈Uj
||q − mj ||2 is minimized. The

problem is called full k-CMeans if k1 = k2 = · · · = kn = k. Similarly we can define chromatic k-
Median clustering (or k-CMedians) for G. Chromatic clustering captures the mutual exclusiveness
relationship among data items and is a rather useful model for various applications. Due to the
additional chromatic constraint, chromatic clustering is thus expected to simultaneously solve the
“coloring” and clustering problems, which significantly complicates the problem. We are able to
show that the chromatic clustering problem is challenging to solve even for the case that each
color is shared only by two data items.

Related works: As its generalization, chromatic clustering is naturally related to the tra-
ditional clustering problem. Due to the additional chromatic constraint, chromatic clustering
could behave quite differently from its counterpart. For example, the k-means algorithms in
[5, 8, 12, 13, 18] relies on the fact that all input points in a Voronoi cell of the optimal k mean
points belong to the same cluster. However, such a key locality property no longer holds for the
k-CMeans problem.

Chromatic clustering falls in the umbrella of clustering with constraint. For such type of
clustering, several solutions exist for some variants [4,7,10]. Unfortunately, due to their heuristic
nature, none of them can yield quality guaranteed solutions for the chromatic clustering problem.
The first quality guaranteed solution for chromatic clustering was obtained recently by Ding and
Xu. In [14], they considered a special chromatic clustering problem, where every point-set has
exactly k points in the first quadrant, and the objective is to cluster points by cones apexed
at the origin, and presented the first PTAS for constant k. The k-CMeans and k-CMedians
problems considered in this paper are the general cases of the chromatic clustering problem. Very
recently, Arkin et al. [1] considered a chromatic 2D 2-center clustering problem and presented
both approximation and exact solutions.

1.1 Main Results and Techniques

In this paper, we present three main results, a constant approximation and a (1+ε)-approximation
for k-CMeans and their extensions to k-CMedians.



– Constant approximation: We show that given any λ-approximation for k-means clustering,
it could yield a (18λ+ 16)-approximation for k-CMeans. This not only provides a way for us
to generate an initial constant approximation solution for k-CMeans through some k-means
algorithm, but more importantly reveals the intrinsic connection between the two clustering
problems.

– (1 + ε)-approximation: We show that a near linear time (1 + ε)-approximation solution for
k-CMeans can be obtained using an interesting sphere peeling algorithm. Due to the lack of
locality property in k-CMeans, our sphere peeling algorithm is quite different from the ones
used in [5,18], which in general do not guarantee a (1+ε)-approximation solution for k-CMeans
as shown by our first result. Our sphere peeling algorithm is based on another standalone result,
called Simplex Lemma. The simplex lemma enables us to obtain an approximate mean point of
a set of unknown points through a grid inside a simplex determined by some partial knowledge
of the unknown point set. A unique feature of the simplex lemma is that the complexity of
the grid is independent of the dimensionality, and thus can be used to solve problems in high
dimensional space. With the simplex lemma, our sphere peeling algorithm iteratively generates
the mean points of k-CMeans with each iteration building a simplex for the mean point.

– Extensions to k-CMedians: We further extend the idea for k-CMeans to k-CMedians.
Particularly, we show that any λ-approximation for k-medians can be used to yield a (3λ+2)-
approximation for k-CMedians. With this and a similar sphere peeling technique, we obtain
a (1 + ε)-approximation for k-CMedians.
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