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1 Introduction

We study a family of line segment visibility problems related to
classical art gallery problems which are motivated by monitoring
and surveillance requirements in commercial data centers. In tra-
ditional art gallery problems (see [4], [3] and [8]) an entire polyg-
onal region must be kept under surveillance. In our case it is a pre-
scribed collection of non-overlapping line segments in the interior
of the polygon which must be kept under surveillance. Moreover,
in many cases, it is required to see just one side of each segment.
Some of our early results attacking simple variants of this problem
were described in [2].

We consider distinct cases where the segments to be monitored
are either all vertical, all axis-aligned, or alternatively, all arbitrar-
ily aligned. Segments are assumed to be non-intersecting. Within
these cases we identify several variants of the basic visibility prob-
lem. Namely, if visibility must be from a given side, but that side is
specified by the problem poser, we say the problem is an instance
of the Poser’s Choice problem. If, on the other hand, the solver
has the choice of which side to monitor the segment from, we say
that it is an instance of the Solver’s Choice problem. Variants
of the Solver’s Choice problem have been studied by Czyzowicz
et al. [1], Toth [5]) and Urrutia [8]. A final variant is where the
solver must monitor the entire segment from both sides (a variant
also considered by Toth [5]).

In general we are interested in many aspects of these problems,
from solving particular instances exactly, or with some approxi-
mation guarantee, to achieving hardness results, or achieving so-
called combinatorial bounds, which say that for an arbitrary set of
n segments, to see all segments using one of the visibility models
may require some number, f(n), cameras. We consider both the-
oretical cameras with unlimited angular visibility and models of
real cameras with some degree of restricted angular visibility or
minimum/maximum depth of field restrictions. In [2] we showed
that it was NP-hard to solve the Poser’s Choice problem for the
case of all vertical segments and cameras with limited angle of vis-
ibility. This result can be extended to cameras of unlimited angle
of visibility in all the variants of the problem we have mentioned.

2 Results

In [2] we established hardness results for problems with either the-
oretical or realistic cameras. In this abstract we focus our discus-
sion on describing some of what we know about the polynomial
bounds for models involving theoretical cameras, i.e. cameras
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with unlimited angular visibility and no depth of field constraints.
These results are summarized in Figure 1.

Figure 1. A table summarizing what we know for the various problem variants.
The ’U’-prefixed number in each cell denotes the best-known combinatorial upper
bound, while the ’L’-prefixed number denotes the best-known lower bound. Results
with a following (C) are due to Czyzowicz et al. [1], those with a following (T) are due
to Toth [5] or [6], those with a following (U) are due to Urrutia [8], and the unlabeled
ones are due to us.

In all cases we are looking for the minimum number of cam-
eras that will suffice to see all segments in the worst case. All
results are modulo additive constants. Thus the theoretical upper
bounds are equal to the theoretical lower bounds. However, as the
reader will undoubtedly notice, in most cases, there is a gap in our
knowledge.

The results along the top row of Figure 1, for all vertical seg-
ments, were presented in [2], though at that time we did not make
the more subtle distinctions between the two types of Solver’s
Choice and two types of Poser’s Choice, so, in effect, only
columns two, four and five were considered. As one moves from
the top-left of this table to the bottom-right the problems become
consistently harder. Thus the number of cameras required to solve
cell (i, j) is less than or equal to the number of cameras needed to
solve either cell (i+1, j) or (i, j +1) ∀i, j. Moreover, the same is
true for any established upper and lower bounds. Our interest in
the subtly different variations, e.g. of Solver’s and Poser’s Choice,
is so that we can try to characterize precisely where the require-
ment for more cameras comes from as we move from the easier to
harder problems. The lower bounds in the table are established by
giving specific examples of segment configurations and arguing
that (at least) the given number of cameras are required. The up-
per bounds are obtained by systematically proving that the given
number of cameras can always be used to see the requisite number
of segments. Additional problem gradations are possible.

Beginning in row 2 of Figure 1, Czyzowicz et al. [1] established
the first interesting result: the upper bound of n

2 for the case of all
axis-aligned segments under Solver’s Choice where the Solver can
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choose to see some points from one side and some from the other.
The argument is an elegant exploitation of the following [7]:

Theorem. (Tutte) A graph G has a perfect matching iff every sub-
set of vertices S is such that the number of connected components
of G\S of odd order is less than or equal to the number of vertices
in S.

The argument begins, WLOG, by extending the segments so
that each end is within some common small epsilon of another
edge, or the boundary. These segments give rise to a dissection
of the original rectangle into “rooms” with tiny passageways be-
tween some adjacent pairs. Form a graph where the nodes of the
graph are the rooms and there is an edge between nodes if there
is a tiny passageway between them. Then use Tutte’s Theorem
to get a near-perfect matching of the rooms. Use the near perfect
matching to situate a set of d n+1

2 e cameras at the passageway to
each pair of rooms, which together see all points on each of the
needed segments from one side or another.

A more careful, and consistent, camera placement enables one
to extend the Czyzowicz et al. argument to give the identical
bound for the more constrained Solver’s Choice problem, as well
as most-constrained Poser’s Choice problem. For all the problems
on orthogonal segments, gaps exist between the best known up-
per and lower bounds, except in the case of the most constrained
Poser’s Choice problem, where a lower bound of n

2 is carried over
from the case of all vertical segments – just consider n vertical
segments all spaced very close to one another and of height h− ε

(h being the height of the rectangle), where the poser requires you
to see all segments from the left. Cameras can effectively see at
most two segments entirely and a tiny bit of any other segment.
Hence d n+1

2 e cameras are required.
The next interesting case we get to, and the only additional one

we will consider in this short article, is that of Poser’s Choice
for the axis-aligned case. A simple example, establishing the 2n

3
lower bound for this problem, pointed out to us four years ago by
Toth [6], is given in Figure 2.

Figure 2. A set of segments for the full Poser’s Choice problem requiring 2n
3 cam-

eras. The sides of the segments which need to be seen are indicated with little
“ticky” marks - i.e. very tiny, orthogonally protruding line segments. The segments
in each of the “H”s require two cameras for all of the specified segment sides to be
seen entirely.

Finally, a 3n
4 upper bound is established by virtue of the follow-

ing:

Theorem. Given n axis-aligned segments contained in a bound-
ing rectangle, it is always possible to see the Poser’s Choice of
sides using at most d 3n

4 e cameras.

Proof. (Sketch) Extend the segments as in the Czyzowicz et al.
argument, and again use the near-perfect matching to pair up

Figure 3. An “H” example (left) and an “h” example (right), in which a single camera
cannot see all points on the required segment sides.

rooms. Call matches of the form shown in Figure 3 “bad matches”
since a single camera cannot entirely see all the needed segment
sides. These are the only cases of two adjoining rooms in which
a single camera does not suffice to see all required segment sides.
Note that in each of these two examples, one can use two cameras
to entirely see the needed segment sides in the two rooms, marked
respectively A and B in each example. Moreover, it is easy to see
that if the three called out lines, m,k,n are part of one bad match,
where two cameras must be expended to see all needed segment
sides, then they are not part of any additional bad matches. Thus
there are at most n/3 bad matches in total.

There are then two cases: (i) There are b ≤ n
4 bad matches,

or (ii) there are n
4 < b ≤ n

3 bad matches. In case (i) we use 2
cameras in each bad match and 1 camera in each good match. In
case (ii) Suppose the are n

3 − h bad matches for 0 ≤ h < n
12 . Use

2 cameras to see each of the 3 defining line segments (i.e. the
analogs of m,n,k in Figure 3) and 1 camera to see each remaining
line segment, In each case a computation shows that we use at
most 3n

4 cameras.
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