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Abstract

We study shortest watchman paths in rectangular
arrangements of tangent unit-radius disks with disk
centers on a square grid lattice. Upper and lower
bounds are given for the length of shortest paths that
see all of the boundary of each disk.

1 Introduction

The watchman tour problem in polygons involves
finding a shortest tour so that every point in the
polygon is seen from at least one point along the
route [1, 2, 3]. We explore a related problem, which
we will call the Disk Grid Path Problem: Given a
rectangular arrangement of tangent unit-radius disks
with disk centers on a square grid lattice, find the
length of a shortest watchman path that sees all of
the boundary of each disk.
An equivalent statement of the Disk Grid Path

Problem is to find a shortest path with length
L(m,n) that travels through each of the m × n
(m ≤ n) “pockets” defined by the regions around
the disks (see Figure 1).

Lemma 1.1. A watchman path P with minimum

length L(m,n) is non-crossing.

Proof. If P crosses itself, we can reroute the crossing
segments locally so that the crossing is eliminated and
the path remains connected. This local change yields
a watchman path with strictly shorter length.

Figure 1: The 3× 4 disk grid with 20 shaded pockets

We will assume that for the Disk Grid Path

Problem, a given pocket is never visited twice. We
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leave the resolution of this conjecture as an open
problem:

Conjecture 1.2 (The simplicity conjecture). An op-

timal solution to the Disk Grid Path Problem

never visits the same pocket twice.

Lemma 1.3. Given the simplicity conjecture, the

Disk Grid Path Problem is equivalent to finding

a Maximum-Turn Hamiltonian Path in an m×n
square grid graph.

Proof. By the simplicity conjecture, an optimal path
visits each vertex of the grid graph once. If the pocket
is visited on a turn, the vertex contributes a cost of
π/2 to the path, which is less than its cost of 2 if
the pocket was visited on a straight path. There are
always two terminating endpoints, so their contribu-
tions are equal and have cost 1. Thus, the shortest
path is exactly the one with the most turns.

Let T (m,n) be the number of turns in a
Maximum-Turn Hamiltonian Path of an m × n
square grid graph. Then, the length of the shortest
watchman path, L(m,n), is given by

L(m,n) =
π

2
T (m,n) + 2 + 2(nm− T (m,n)− 2)

= 2(nm− 1)− (2−
π

2
)T (m,n)

Therefore, in order to find the minimum-length
watchman path in disk grids, we bound the num-
ber of right-angle turns in a Hamiltonian path on an
m× n grid graph.

2 Results

We summarize our results in Table 1, of lower and
upper bounds on T (m,n), m ≤ n. This, in turn,
bounds L(m,n), via the above equation.

Conjecture 2.1. T (m,n) = nm−m for m,n even.

2.1 Upper Bounds

Examine two adjacent vertices in the grid graph.
There are three types of ways the vertices can be



m n lower bound upper bound
odd = m nm− n− 1 nm− n− 1
odd odd\even nm− n nm− n
even odd nm−m nm−m
even even nm−m nm− 4

Table 1: Combinatorial bounds for T (m,n)

visited. The equivalence classes up to symmetry are
in Figure 2 (square vertices are endpoints):

Type I Type II Type III

Figure 2: The types of vertex visitations

We divide the grid into horizontal strips of thick-
ness 2, then analyze which vertex types can occur.

Lemma 2.2. A horizontal strip of the grid graph that

contains a right-pointing Type I pair of vertices must

contain at least 1 additional non-turn vertex.

Proof. In all cases, either a non-turn vertex appears,
or a new Type I pair arises to the right side of the
old pair. A Type I pair cannot appear on the right
boundary, so there must be a non-turn vertex.

Corollary 2.3. If a strip contains a Type I pair then

it contains at least two non-turn vertices.

Proof. All Type I pairs either contain a non-turn ver-
tex already, or are symmetric so that there is a non-
turn both to the right and to the left of the pair.

Lemma 2.4. A strip with odd width must contain a

Type I or Type III pair of vertices. Specifically, such

a strip must contain at least 2 non-turn vertices.

Proof. Each of the Type II vertices involves exactly
two pairs of vertices so one pair must be left out.

Theorem 2.5. The upper bounds for T (m,n) in Ta-

ble 1 hold.

Proof. Due to space constraints, we only show the
case where m is odd and n is even. The remaining
cases are similar. Take the m×n grid graph and cut
it into n

2
, 2 × m strips. Since m is odd, by Lemma

2.4, there is a pair of non-turn vertices in each of the
strips, leaving at most 2m− 2 turns per strip. Thus,
there are at most n

2
(2m − 2) = nm − n turns in an

optimal path.

2.2 Lower Bounds

Watchman paths that achieve the number of turns in
Table 1 can be constructed (in general) via a spiraling
pattern. Figure 3 gives several examples.

Figure 3: Examples of watchman paths that achieve
the lower bounds given in Table 1

3 Conclusion

For future work, we would like to establish tight
bounds for the unresolved case when both m and n
are even. In addition, we would like to prove the sim-
plicity conjecture for paths and consider the closely
related Disk Grid Cycle Problem.
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