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Abstract

We study shortest watchman paths in rectangular
arrangements of tangent unit-radius disks with disk
centers on a square grid lattice. Upper and lower
bounds are given for the length of shortest paths that
see all of the boundary of each disk.

1 Introduction

The watchman tour problem in polygons involves
finding a shortest tour so that every point in the
polygon is seen from at least one point along the
route [1, 2, 3]. We explore a related problem, which
we will call the DISK GRID PATH PROBLEM: Given a
rectangular arrangement of tangent unit-radius disks
with disk centers on a square grid lattice, find the
length of a shortest watchman path that sees all of
the boundary of each disk.

An equivalent statement of the DISK GRID PATH
PROBLEM is to find a shortest path with length
L(m,n) that travels through each of the m x n
(m < n) “pockets” defined by the regions around
the disks (see Figure 1).

Lemma 1.1. A watchman path P with minimum
length L(m,n) is non-crossing.

Proof. If P crosses itself, we can reroute the crossing
segments locally so that the crossing is eliminated and
the path remains connected. This local change yields
a watchman path with strictly shorter length. O

Figure 1: The 3 x 4 disk grid with 20 shaded pockets

We will assume that for the DISK GRID PATH
PROBLEM, a given pocket is never visited twice. We
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leave the resolution of this conjecture as an open
problem:

Conjecture 1.2 (The simplicity conjecture). An op-
timal solution to the DISK GRID PATH PROBLEM
never visits the same pocket twice.

Lemma 1.3. Given the simplicity conjecture, the
Disk GRID PATH PROBLEM is equivalent to finding
a MAXIMUM-TURN HAMILTONIAN PATH in an mXxn
square grid graph.

Proof. By the simplicity conjecture, an optimal path
visits each vertex of the grid graph once. If the pocket
is visited on a turn, the vertex contributes a cost of
/2 to the path, which is less than its cost of 2 if
the pocket was visited on a straight path. There are
always two terminating endpoints, so their contribu-
tions are equal and have cost 1. Thus, the shortest
path is exactly the one with the most turns. O

Let T(m,n) be the number of turns in a
MAXIMUM-TURN HAMILTONIAN PATH of an m X n
square grid graph. Then, the length of the shortest
watchman path, L(m,n), is given by

L(m,n) = %T(m,n) +242(nm —T(m,n) —2)

=2(nm—1)— (2 - g)T(m,n)

Therefore, in order to find the minimum-length
watchman path in disk grids, we bound the num-
ber of right-angle turns in a Hamiltonian path on an
m X n grid graph.

2 Results

We summarize our results in Table 1, of lower and
upper bounds on T(m,n), m < n. This, in turn,
bounds L(m,n), via the above equation.

Conjecture 2.1. T(m,n) = nm —m for m,n even.

2.1 Upper Bounds

Examine two adjacent vertices in the grid graph.
There are three types of ways the vertices can be



m n lower bound | upper bound
odd =m nm-n—1| nm—-n-—1
odd | odd\even nm—n nm-—n
even odd nm—m nm-—m
even even nm—m nm — 4

Table 1: Combinatorial bounds for T'(m,n)

visited. The equivalence classes up to symmetry are
in Figure 2 (square vertices are endpoints):
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Figure 2: The types of vertex visitations

We divide the grid into horizontal strips of thick-
ness 2, then analyze which vertex types can occur.

Lemma 2.2. A horizontal strip of the grid graph that
contains a right-pointing Type I pair of vertices must
contain at least 1 additional non-turn vertex.

Proof. In all cases, either a non-turn vertex appears,
or a new Type I pair arises to the right side of the
old pair. A Type I pair cannot appear on the right
boundary, so there must be a non-turn vertex. O

Corollary 2.3. If a strip contains a Type I pair then
it contains at least two non-turn vertices.

Proof. All Type I pairs either contain a non-turn ver-
tex already, or are symmetric so that there is a non-
turn both to the right and to the left of the pair. [

Lemma 2.4. A strip with odd width must contain a
Type I or Type III pair of vertices. Specifically, such
a strip must contain at least 2 non-turn vertices.

Proof. Each of the Type II vertices involves exactly
two pairs of vertices so one pair must be left out. [

Theorem 2.5. The upper bounds for T(m,n) in Ta-
ble 1 hold.

Proof. Due to space constraints, we only show the
case where m is odd and n is even. The remaining
cases are similar. Take the m x n grid graph and cut
it into 4, 2 x m strips. Since m is odd, by Lemma
2.4, there is a pair of non-turn vertices in each of the
strips, leaving at most 2m — 2 turns per strip. Thus,
there are at most §(2m — 2) = nm — n turns in an
optimal path. O

2.2 Lower Bounds

Watchman paths that achieve the number of turns in
Table 1 can be constructed (in general) via a spiraling
pattern. Figure 3 gives several examples.
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Figure 3: Examples of watchman paths that achieve
the lower bounds given in Table 1

3 Conclusion

For future work, we would like to establish tight
bounds for the unresolved case when both m and n
are even. In addition, we would like to prove the sim-
plicity conjecture for paths and consider the closely
related DISK GRID CYCLE PROBLEM.
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