
Group Following in Monotonic Tracking Regions ∗

Christopher Vo Jyh-Ming Lien †

Abstract
For a 2-d pursuit-evasion game called group follow-

ing, we study a data structure called monotonic tracking
regions (mtr). An mtr has a support path so that the
points along the path can collectively see every point
in the mtr. An mtr can be considered as a general-
ization of a star-shaped region. Using an mtr, we can
plan online the path of a bounded-speed camera track-
ing a group of n agents to a planning horizon h in time
O(hn2).

1 Introduction
Monotonic tracking regions (mtrs) [Vo and Lien

2010] are a data structure to guide a single camera fol-
lowing multiple coherent targets in a 2D workspace. In-
tuitively, in an mtr, the camera can maintain visibility
of targets by moving along a trajectory. This mtr data
structure allows us to generate the camera’s motion on-
line by solving a linear programming problem.

We assume that the camera C has a bounded linear
velocity vmaxC . The exact configuration of this view at
time t, denoted as VC(t), is defined by the camera’s view
direction θC(t) and location xC(t). The position of the
camera is simply: xC(t + 4t) = xC(t) + 4t · vC(t) ,
where vC(t) is the camera’s velocity at time t. The
target T comprises a group of coherent non-adversarial
members, whose trajectories are not known in advance.
We also assume that the size of T and T ’s maximum
(linear) velocity vmaxT are known (by the camera). The
position of xτ (t) a target τ ∈ T at time t is known only
if τ is visible by the camera. We attempt to maximize
the number of visible targets:

arg max
vC (t)

(∑
t

card({T ′ ⊂ T | XT ′ (t) ⊂ VC(t)})
)

,

where card(X) is the number of elements in X .

2 Monotonic Tracking Regions (MTRs)
We let a 2D regionMπ be a generalized cylinder de-

fined w.r.t a supporting path π. We say π is a supporting
path of Mπ if every point x ∈ Mπ can see a subset of
π. Consequently, the visibility of π spans Mπ.

Definition 2.1. Mπ ⊂ F is a region supported by a
path π if Mπ = {x | ∃y ∈ π s.t. xy ⊂ F}, where xy is
an open line segment between x and y, and F is the free
space (i.e., the area without obstacles).

Furthermore, we define the subset of π visible by x
as: Vπ(x) = {y ∈ π | xy ⊂ F} . Finally, we define mtr.

∗This work is supported in part by NSF IIS-096053, NSF
EFRI-1240459, AFOSR FA9550-12-1-0238.
†Both authors are with Department of Computer Science,

George Mason University, Fairfax, VA 22030 USA.

Definition 2.2. A regionMπ ∈ F is an mtr supported
by π if |Vπ(x)| = 1, ∀x ∈ Mπ, where |X | is the number
of connect components in a set X .

Because each x ∈ Mπ can see only an interval of π,
we can compactly represent the visible region (called
visibility interval) of x as a tuple Vπ(x) = (s, t), 0 ≤ s ≤
t ≤ 1, if we parameterize π from 0 to 1.

2.1 Follow a single target

Let xτ (t) be the position of the target τ at time t.
Since we know the maximum speed of the target, we
can estimate the positions xτ (t +4t) in the next time
step, i.e., the intersection of F and a disc with radius
4t · vmaxT . In order to keep the target in the view, the
camera’s next position xC(t+4t) must be:

xC(t+4t) ∈ Vπ (xτ (t+4t)) =
⋂

x∈xτ (t+4t)

Vπ(x) .

Let Ii = Vπ(xτ (t + i · 4t)) = (si, ti). Here i is an
integer from 1 to h, where h is the user-defined time
horizon. Both si and ti are parameters on the parame-
terized path π. In order to follow the target for h steps,
the planner needs find a sequence of parameterized cam-
era locations xi from a sequence of intervals such that
every point xi is in its corresponding interval Ii. In ad-
dition, one may desire to minimize the distance travelled
by the camera. Taking all these into consideration, this
problem can be formulated as an h-dimensional linear
programming (LP) problem:

min xh − x1
s.t. si ≤ xi ≤ ti,∀i ∈ {1, 2, · · · , h}

We call the above LP problem the canonical following
problem. Solving a canonical following problem can be
done efficiently since h is usually small (≤ 20).

2.2 Follow multiple targets

Now, we will extend the canonical following problem
to handle multiple targets T . Let xT (t) be the current
positions of the targets T . Similar to the case of a single
target, we estimate the positions xT (t+4t) in the next
time step. In order to see a least one target, the camera
must move so that

xC(t+4t) ∈
⋃
τ∈T
Vπ(xτ (t+4t)) =

⋃
τ∈T

 ⋂
x∈xτ (t+4t)

Vπ(x)

 .

To simplify our notation, let Ii =
⋃
τ∈T Vπ(xτ (t) + i ·

4t) = (si, ti). By placing the camera in Ii, we can
guarantee that at least one target is visible. However,
our goal is to maximize the number of visible targets,
at least over the planning horizon. To do so, we seg-
ment Ii into subintervals Iji , each of which can see nji

si ti
Vπ(t0)

Vπ(t1)

Vπ(t2)

Vπ(t3)

Vπ(t4)

(a)

si ti
1 2 3 4 3 2 1 2 1

(b)

Figure 1: (a) The interval Ii = (si, ti) = ∪τ∈TVπ(xτ).
(b) The interval Ii is segmented into 9 subintervals, each
of which is a set of points in π that can see the same
number of targets, which is shown below each interval.

targets. Fig. 1(a) shows an example of Ii defined as
the union the all the visibility intervals Vπ(xτ) of the
targets τ . Note that Ii may contain multiple connected
components. Fig. 1(b) shows the subdivision of Ii (i.e.,

subintervals Iji) bounded by the end points of Vπ(xτ).

Each Iji is associated with the number of visible targets

nji . When the velocity of the camera is unlimited, then

the optimal strategy is to pick the subinterval Iji with

the largest nji in each Ii, i.e., Ii is shrunk to Iji . Thus,
instead of solving the the following problem using Ii,
the subintervals Iji will be used. See Fig. 2.

From Fig. 2, one can also see that the distance that
the camera has to travel from x2 to x3 is quite long,
thus the camera will need to move very fast to main-
tain the maximum visibility. When the camera speed
is bounded, this may not always be possible. There-
fore, we need a way to select a subinterval from each
Ii so that the total number of visible targets is max-
imized while still maintaining the constraint that the
minimum distance between Iji ⊂ Ii and Iki+1 ⊂ Ii+1 is
smaller than 4t · vmaxT . More specifically, we would like
to find a solution to the following problem:

arg max
{ji}

(
h∑
i=1

njii

)
s.t. dist(Ijii , I

ji+1

i+1) ≤ 4t · vmaxT , ∀i ,

where ji is the index of the ji-th subinterval in interval
Ii, and dist(x, y) is the closest distance between two
subintervals x and y. Although, at the first glance, this
problem seems to be another LP problem, fortunately,
Lemma 2.3 shows that the optimal subintervals can be
found in O(hn2) time, where n is the number of targets
and h is the time horizon.

s1

s2

s3

s4 t4
t3

t2t1

πx1 x2 x3 x4

Figure 2: Make predictions in subintervals with maxi-
mum targets visibility for the next h = 4 future steps.

Lemma 2.3. Finding all Ijii will take O(hn2) time for
n targets and h planning time horizon.

Proof. The main idea is to construct a directed graph
from these subintervals and the current position of the
camera, and show that this graph must be a DAG with
O(hn) vertices and O(hn2) edges. Then the problem
of find a sequence of optimal subintervals become the
longest path search problem in the DAG, which can be
solved in time linear to the size of the graph.

To construct such a graph, we first define the idea of
reachability. Given two subintervals u and v from two
consecutive intervals, the reachable interval r(u, v) ∈ v
is a set of points in v that the camera can reach from
u in one step without violating the speed constraint. If
r(u, v) is not empty, then we say v is reachable from u.
Note that the reachability can be nested, i.e., given three
subintervals u, v, and w, we say that w is reachable from
u if r(u,w) = r(r(u, v), w) is not empty. In the graph
that we will construct, we ensure that every node in the
graph is reachable from the current position xC of the
camera. Finally, we say that a subinterval v is reachable
by the camera if r(xC , v) is not empty.

Specifically, we let the current position xC of the cam-
era be the source of the graph and let the subinter-
vals be the rest of the nodes in the graph. The source
are then connected to the subintervals in I1 that are
reachable by the camera. The each reachable subinter-
val in I1 are connected to the subintervals in I2 that
are reachable by the camera. The process repeats until
the reachable intervals in Ih are connected by those in
Ih−1. Note that since we only need to pick one subin-
terval from each interval, the subintervals within each
interval are not connected. Finally, we let the edge
weight be the number of visible targets in the desti-
nation node. The graph constructed this way must be
a DAG since there is no back edge. Any path the con-
nects the source to a sink will contain a sequence of
valid subintervals. Thus, finding the maximize number
of targets visible from these subintervals is equivalent
to finding the longest path in the DAG, which can be
solved in linear time using topological sort. Since each
interval will have Θ(2n) subintervals and two consecu-
tive intervals will have 4n2 edges, this DAG has O(hn)
vertices and O(hn2) edges.

References
Vo, C., and Lien, J.-M. 2010. Following a large un-

predictable group of targets among obstacles. In The
Third International Conference on Motion in Games.

	Introduction
	Monotonic Tracking Regions (MTRs)
	Follow a single target
	Follow multiple targets

