Approximation Algorithms for Outlier Removal in Convex Hulls

Michael Biro ∗ Justine Bonanno† Roozbeh Ebrahimi † Lynda Montgomery ∗

Abstract

Given \(n \) points in \(\mathbb{R}^2 \), we give approximation algorithms to find a subset of \(k \) of the points that has minimum-area or minimum-perimeter convex hull. We give algorithms that, for each \(k \), yield a constant-factor approximation to the minimum-perimeter problem in linear time. We also show a 2-approximation for the minimum-area problem in time \(O(\min(n^3 \log n, n^2 \log n + kn(n-k)(n-k+\log k))) \), as well as a heuristic for both problems that appears to work well in practice.

1 Introduction

The problem of finding a subset of size \(k \) from a point set of size \(n \) that has the least-perimeter convex hull was considered in several papers, going back to 1983, with results improving from the original \(O(k^2 n \log n + k^3 n) \) in Dobkin et al. [8] to \(O(n \log n + k^3 n) \) in Datta et al. [7] and Eppstein et al. [4]. Finding the subset of \(k \) points with the minimum-area convex hull was considered in Eppstein [3], and Eppstein et al. [5], where they give \(O(kn^2) \) and \(O(n^2 \log n + k^3 n^2) \) exact algorithms.

These algorithms give the exact solution, but their runtimes can be \(\Omega(n^3) \) and \(\Omega(n^5) \), respectively for perimeter and area, and for large \(k \). Recently, for \(k = n - c \), Atanassov, et al. [2] gave exact \(O(n \log n + (\frac{n}{c}) (3c)^{c+1} n) \) algorithms for both problems, however this still leaves a difficulty of finding exact solutions for \(k \) sufficiently far from \(n \). We give a linear-time, constant-factor approximation to the minimum-perimeter problem, as well as a 2-approximation for the minimum-area problem that runs in \(O(\min(n^3 \log n, n^2 \log n + kn(n-k)(n-k+\log k))) \) time. In addition, we describe a heuristic for choosing the outliers that seems to work well in practice.

2 Minimum-Perimeter Convex Hull

We approximate the \(k \)-outlier minimum-perimeter convex hull by approximating the shape of the convex hull as either a rectangle or circle.

Lemma 2.1. Let \(P \) be a convex set in \(\mathbb{R}^2 \). Then the perimeter of \(P \) is at most a factor \(\sqrt{2} \) away from the perimeter of the minimum-perimeter axis-parallel rectangle containing \(P \).

Lemma 2.2. Let \(P \) be a convex set in \(\mathbb{R}^2 \). Then the perimeter of \(P \) is at most a factor of \(\frac{3}{2} \) away from the perimeter of the minimum disc enclosing \(P \).

We now use recent results of Ahn et al. [1], that finds the minimum-perimeter axis-parallel rectangle in time \(O(n + k^3) \), and results of Har-Peled et al. [9] that finds a \((1 + \epsilon)\)-approximation to the minimum enclosing disk in time \(O(n + n \cdot \min(\frac{1}{\epsilon} \log^2 (\frac{1}{\epsilon}), k)) \). Then we have,

Theorem 2.3. The \(k \)-outlier minimum-perimeter convex hull problem can be approximated by a factor of \(\sqrt{2} \) in time \(O(n + k^3) \), and a factor of \(\frac{3}{2} (1 + \epsilon) \) in time \(O(n + n \cdot \min(\frac{1}{\epsilon} \log^2 (\frac{1}{\epsilon}), k)) \).

These algorithms give constant-factor approximations to the minimum-perimeter problem for a variety of values of \(k \). If \(k = O(n^{1/3}) \) then the rectangle algorithm yields a \(\sqrt{2} \) approximation in linear time, and if \(k = \Omega(n^{1/3}) \), then the disk algorithm gives a \(\frac{3}{2} \) \((1 + \epsilon)\)-approximation in linear time (for constant values of \(\epsilon \)). Therefore, for each value of \(k \), we give constant-factor approximations to the \(k \)-outlier minimum-perimeter problem that run in linear time.

Corollary 2.4. For each \(k \), the \(k \)-outlier minimum-perimeter convex hull problem can be approximated by a constant factor in linear time.

3 Minimum-Area Convex Hull

We approximate the \(k \)-outlier minimum-area convex hull problem by approximating the shape of the convex hull as a rectangle with arbitrary orientation.
Lemma 3.1. Let P be a convex set in \mathbb{R}^2. Then the area of P is at most a factor of 2 away from the area of the minimum-area rectangle enclosing P.

Proof. Take the longest diagonal D of P, and construct a minimal enclosing rectangle R with two sides parallel to D. Take R along with the D and the two points defining the perpendicular edges to D of R. The area of P is at least the area of the two triangles thus defined, and the two triangles take up exactly half of R. Therefore, R has area at most twice the area of P, and as the minimum-area rectangle has area at most the area of R, it has area at most twice the area of P. \hfill \Box

Using the idea in the above proof, we construct an algorithm that checks every possible longest diagonal D of the point set P, then computes the minimum-area rectangle containing at least k points among all such diagonals, in time $O(n^2 \log n)$.

1. Examine every pair of points (p, q) and look at the strip defined by lines perpendicular to pq through p and q respectively. Find the points of P that lie in the strip.

2. Sort the points in the strip by distance of pq, and for every point in the strip find the corresponding point so that the rectangle defined by the four points contains k points of P.

3. Take the minimum-area rectangle among all rectangles constructed.

We combine this with the recent result of Das et al. [6], that finds a minimum-area rectangle in time $O(\log^3 n)$.

Theorem 3.2. The k-outlier minimum-area convex hull problem can be 2-approximated in time $O(\min(n^3 \log n, n^2 \log n + kn(n-k)(n-k+\log k)))$.

This approximation is useful if k is $\Theta(n)$, so the optimal solution in [3] runs in time $\Omega(n^5)$, but not $n-c$ for constant c, as the optimal solution in [2] runs in time exponential in c.

4 Heuristic

In this section, we describe a heuristic for the minimum-area convex hull problem. It runs in time $O(n(n-k) \log n)$ in the worst case, and while there are cases where it gives arbitrarily bad approximations, in practice it has yielded good results.

1. Find the diameter d of the points, say between points a and b. Define a lune L by intersecting disks of radius d centered at a and b, respectively.

2. Let O be the midpoint of ab. Divide L evenly into 4 equal sectors around O and associate the points with their respective sector. Sort the points with respect to distance from O.

3. If any sector contains fewer than $n-k$ points, remove all points in that sector.

4. Remove points in order of decreasing distance from O until either $n-k$ points are removed, or one of a, b is removed. If the latter, begin again.

5 Conclusion

For future work, we would like to find a PTAS for minimum-perimeter that runs in linear or near-linear time, as well as improve the running time of the approximation for minimum-area convex hulls.

References

