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Extended Abstract. Given a set S = {v1, . . . , vn} ⊂ Rm and a point p ∈ Rm, testing if p ∈ conv(S), the
convex hull of S, is a fundamental problem in computational geometry and linear programming. Denoting
the Euclidean distance between u,w ∈ Rm by d(u, v) =

√∑m
i=1(ui − wi)2, first we prove a distance duality:

Distance Duality
Precisely one of the two conditions is satisfied:
(i): For each p′ ∈ conv(S) \ {p}, there exists vj ∈ S such that d(p′, vj) ≥ d(p, vj);
(ii): There exists p′ ∈ conv(S) such that d(p′, vi) < d(p, vi), for all i = 1, . . . , n.

Condition (i) is valid if and only if p ∈ conv(S), and condition (ii) if and only if p 6∈ conv(S). Utilizing
this duality, we describe a simple fully polynomial time approximation scheme, called the Triangle Algorithm:

Triangle Algorithm (S = {v1, . . . , vn}, p)
• Step 1. Given p′ ∈ conv(S) \ {p}, check if there exists vj ∈ S such that d(p′, vj) ≥ d(p, vj).

If no such vj exists, stop, p 6∈ conv(S).

• Step 2. Otherwise, on the line segment joining p′ to vj compute the point nearest to p.
Denote this by p′′. Replace p′ with p′′, go to Step 1.

We refer to p′ in Step 1 as iterate and vj as pivot point. Given ε ∈ (0, 1), the Triangle Algorithm in at
most 48mnε−2 = O(mnε−2) arithmetic operations computes a point p′ ∈ conv(S) such that either

d(p′, p) ≤ εd(p, vj), for some j; or (1)

d(p′, vi) < d(p, vi), ∀i = 1, . . . , n. (2)

We refer to the point p′ satisfying (1) as an ε-approximate solution. Clearly, approximation to a prescribed
absolute error is also possible. We refer to a point p′ satisfying (2) as witness. This condition holds if and
only if p 6∈ conv(S). This is because in this case we can prove the Voronoi cell of p′ with respect to the two
point set {p, p′} contains conv(S) (see Figure 1). Equivalently, the orthogonal bisector of the line segment
pp′ separates p from conv(S).
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Figure 1: Example of cases where orthogonal bisector of pp′ does and does not separate p from conv(S).

The set Wp of all such witnesses is the intersection of conv(S) and the open balls, Bi = {x ∈ Rm :
d(x, vi) < d(p, vi)}, i = 1, . . . , n. Wp is a convex open set in the relative interior of conv(S) (see Figure 2).

By squaring the distances, d(p′, vj) ≥ d(p, vj) ⇐⇒ d(p′, 0)2 − d(p, 0)2 ≥ 2vTj (p′ − p). Thus Step 1 does
not require taking square-roots. Also, the computation of p′′ in Step 2 requires no square-root operations.

Given a point p′ ∈ conv(S) that is not a witness, having d(p, p′) as the current gap, the Triangle Algorithm
moves to a new point p′′ ∈ conv(S) where the new gap d(p, p′′) is reduced. We will prove that when
p ∈ conv(S), the number of iterations Kε, needed to get an approximate solution p′ satisfying (1) is bounded
above by 48ε−2 = O(ε−2). In the worst-case each iteration of Step 1 requires O(mn) arithmetic operations.
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Figure 2: Examples of empty Wp (p ∈ conv(S)) and nonempty Wp (p 6∈ conv(S)), gray area.

However, it may also take only O(m) operations. The number of arithmetic operations in each iteration of
Step 2 is only O(m). Thus the complexity for computing an ε-approximate solution is O(mnε−2) arithmetic
operation. In particular, for fixed ε the complexity of the algorithm is only O(mn).

When p 6∈ conv(S), the Triangle Algorithm does not attempt to compute the closest point to p, say
p∗ ∈ conv(S), rather a separating hyperplane. However, by virtue of the fact that it finds a hyperplane
orthogonally bisecting the line pp′, it in the process computes an approximation to d(p, p∗) to within a factor
of two. More precisely, any witness p′ satisfies the inequality

.5d(p, p′) ≤ d(p, p∗) ≤ d(p, p′). (3)

Not only this approximation is useful for the convex hull problem, but for computing the distance between
two convex hulls, the polytope distance problem. As is well known the Minkowski difference of two convex
hulls is a polytope whose shortest vector has norm equal to the distance between the two polytopes.

The justification in the name of the algorithm lies in the fact that in each iteration the algorithm searches
for a triangle 4pp′vj where vj ∈ S, p′ ∈ conv(S)\{p}, such that d(p′, vj) ≥ d(p, vj). Given that such triangle
exists, it uses vj as a pivot point to “pull” the current iterate p′ closer to p to get a new iterate p′′ ∈ conv(S).

We also show how to solve general LP via the Triangle Algorithm and give a corresponding complexity
analysis. In particular, we prove a sensitivity theorem that converts LP feasibility with bounded domain
into a convex hull problem, then gives the necessary accuracy for computing an ε-approximate solution. We
also contrast the theoretical performance of the Triangle Algorithm with the sparse greedy approximation
(equivalent to Frank-Wolfe and Gilbert algorithms) for the minimization of a convex quadratic over a simplex,
a problem arising in machine learning, approximation theory, and statistics. The bibliography contains
sample references from the main article.
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[3] B, Gärtner and M. Jaggi, Coresets for polytope distance, Symposium on Computational Geometry (2009), 33 -
42.

[4] E. G. Gilbert, An iterative procedure for computing the minimum of a quadratic form on a convex set, SIAM
Journal on Control Volume 4 (1966), 61 - 80.

[5] B. Kalantari, Finding a lost treasure in convex hull of points from known distances. In the Proceedings of the
24th Canadian Journal of Computational Geometry (2012), 271 - 276.

[6] T. Zhang, Sequential greedy approximation for certain convex optimization problems, IEEE Trans. Information
Theory, 49 (2003), 682 - 691.

Department of Computer Science, Rutgers University, Piscataway, NJ 08854
kalantari@cs.rutgers.edu

2


