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1 Introduction

We consider the smallest superpolyomino problem:
given a set of colored polyominoes, find the smallest
superpolyomino containing each input polyomino as a
subpolyomino. Alternatively, find an overlapping ar-
rangement of the polyominoes such that all overlapping
cells have matching colors and the union of the poly-
ominoes is as small as possible.

In one dimension, this problem is equivalent to
the smallest superstring problem and admits a greedy
constant-factor approximation algorithm [1]. Charikar
et al. [2] use this to develop a straightforward O(log3 n)-
approximation algorithm for finding the smallest
context-free grammar encoding a string.

One motivation for investigating the smallest su-
perpolyomino problem is the possibility of extending
the Charikar algorithm to higher dimensions, yielding
good grammar-based image and shape compression al-
gorithms. Here we show that such an extension is un-
likely to exist by proving that the smallest superpoly-
omino problem is NP-hard to approximate within a
O(n1/3−ε)-factor for any ε > 0 by a reduction from
chromatic number.

2 Definitions

A polyomino P = (S,L) is defined by a connected set of
points S on the square lattice (called cells) containing
(0, 0), and a coloring of the cells, e.g. cell (3, 1) is red,
cell (3, 2) is gray, etc. We denote the color of the cell
(x, y) as P (x, y), and |P | denotes the number of cells in
P , i.e. the size of P . Two polyominoes Pu = (Su, Lu)
and Pv = (Sv, Lv) at some translation (δx, δy) are com-
patible if for each (x, y), either Pv(x, y) or Pu(x, y) is
empty or Pv(x, y) = Pu(x+δx, y+δy). Similarly, a poly-
omino P = (S,L) is a superpolyomino of P ′ = (S′, L′)
if there exists a translation (δx, δy) such that for each
(x, y), either (x, y) 6∈ S′ or P ′(x+ δx, y + δy) = P (x, y),
i.e. there is a translation of P ′ such that P ′ is compat-
ible with P and lies entirely in P .
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3 Reduction

Given a graph G = (V,E), each vertex v ∈ V is con-
verted into a polyomino Pv = (Sv, Lv) that encodes v
and the neighbors of v in G (see Figure 1). Each Pv is a
rectangular 2|V |× |V | polyomino with up to |V |−1 sin-
gle squares removed and lower-left corner at (0, 0). The
four corners of all Pv have a common set of four col-
ors: green, blue, purple, and orange. Cells at locations
{(2i + 1, 1) | 0 ≤ i < |V |} are colored black if vi = v,
red if (v, vi) ∈ E, or are empty locations if vi is not v
or a neighbor of v. All remaining cells have a common
gray color.
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Figure 1: An example of the set of polyominoes gener-
ated from an input graph by the reduction.

Consider how two polyominoes Pu and Pv can over-
lap, depending upon the relationship of u and v. Be-
cause of the four distinct corner colors, Pu and Pv can
only overlap when these four locations in Pv are trans-
lated to the same locations in Pu. In this translation,
the cells at location (2i + 1, 1) in Pu and Pv are com-
patible exactly when (u, v) 6∈ E, i.e. u and v are not
neighbors. All other cells are colored gray and thus
compatible.

The superpolyomino formed by a pair of compatible
Pu and Pv in this translation has the common set of
four colored corner cells and many gray cells, and has
two black cells and a number of red cells corresponding
to the combined neighborhoods of u and v. Then by
induction, any set of polyominoes can overlap if and
only if they form an independent set. Moreover, if they
overlap, they overlap using a set of translations in which
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the four corners of all polyominoes are placed at four
common locations.

Because the polyominoes can only overlap in this con-
strained way, any superpolyomino of the polyominoes
{Pv | v ∈ V } consists of a number of decks of superim-
posed polyominoes corresponding to independent sets
of vertices in G arranged disjointly to form a single con-
nected polyomino (see Figure 2).

Figure 2: An example of a corresponding 4-deck super-
polyomino and 4-colored graph.

Recall that each Pv is a 2|V | × |V | rectangle with |V |
cells colored black, red, or are not present. The size of
Pv is then between 2|V |2−|V |+ 1 and 2|V |2 depending
upon the number of neighbors of v, and each deck of
polyominoes also has size in this range.

Lemma 3.1 For a graph G = (V,E), there exists a
superpolyomino of size at most 2k|V |2 for polyominoes
{Pv | v ∈ V } if and only if the vertices of V can be
k-colored.

Proof First, consider extreme sizes of superpolyomi-
noes consisting of k and k − 1 decks. For any V and k
with 1 ≤ k ≤ |V |, (k − 1)(2|V |2) = 2k|V |2 − 2|V |2 <
2k|V |2 − k|V | = k(2|V |2 − |V |), i.e. the size of any su-
perpolyomino of k − 1 decks is smaller than the size of
any superpolyomino of k decks.

We now prove both implications of the lemma. First,
assume the superpolyomino of size at most 2k|V |2 ex-
ists. Then the superpolyomino must consist of at most
k decks. Each deck is the superposition of a set of poly-
ominoes forming an independent set, so G can be k-
colored.

Next, assume thatG can be k-colored. Then the poly-
ominoes {Pv | v ∈ V } can be translated to form k decks,
one for each color, each with size at most 2|V |2. Placing
these decks adjacent to each other yields a superpoly-
omino of size at most 2k|V |2. �

Note that only |V | cells of each Pv are distinct and
depend on v, while the other 2|V |2 − |V | are held con-
stant. The extra cells are needed for the first inequality
in Lemma 3.1, and they effectively “drown out” the dif-
ference in sizes of various decks due to the number of
cells not present in each deck.

Theorem 3.2 The smallest superpolyomino problem is
NP-hard to approximate within a factor of O(n1/3−ε)
for any ε > 0.

Proof Consider the smallest superpolyomino problem
for the polyominoes generated from a graph G = (V,E)
with chromatic number k. There are |V | of these poly-
ominoes, each of size Θ(|V |2), so the polyominoes have
total size n = Θ(|V |3). By Lemma 3.1, a superpoly-
omino of size between (2|V |2 − |V |)k′ and 2|V |2k′ ex-
ists if and only if there exists a k′-coloring of G. Then
by Zuckerman [3], finding a superpolyomino such that
(2|V |2 − |V |)k′/(2|V |2)k = O(|V |1−ε) = Θ(n1/3−ε) is
NP-hard.

As seen in Figure 3, the result also holds when con-
strainted to sets of polyominoes using at most two colors
by converting each cell into a unique 8× 8 macro-cell.

⇒

Figure 3: Converting a reduction polyomino (left) to a
two-color reduction polyomino (right).

We mention (but do not prove here) that the problem
constrained to single-color sets of polyominoes is NP-
hard by a reduction from set cover. An example of a
polyomino set used in the reduction is seen in Figure 4.

Figure 4: The set of polyominoes produced from the
reduction from minimum set cover to smallest super-
polyomino for the set {{1, 2}, {1, 4}, {2, 3, 4}, {2, 4}}.
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