
A Geometric Workbench for Degree-Driven Algorithm Design

Jack Snoeyink ∗ Clinton Freeman ∗

Abstract. We recall the design and implementa-
tion of a geometric algorithm workbench for imple-
menting and presenting degree-driven geometric al-
gorithms.

1 Introduction

Two and three dimensional geometric algorithms are
often difficult to implement and convey to others.
Algorithm implementers need to correct program-
ming errors and ensure that degenerate situations
are handled correctly. Traditional debuggers provide
only textual or numerical representations of geomet-
ric data structures, and generating degenerate geo-
metric input is a nontrivial task for which there is
often little recourse. Algorithm presenters need to
convey their ideas to audiences of researchers and stu-
dents. Many presenters tend to use static depictions
with verbal explication of algorithm mechanics. This
type of presentation does not fully capture the dy-
namic nature of algorithms, and can be difficult for
the audience to follow.

A geometric algorithm workbench aids algorithm
implementers and presenters by providing facilities to
dynamically visualize geometric algorithms. Imple-
menters can visually inspect geometric relationships
and properties of data structures, enabling quick
recognition of erroneous computations. Presenters
can produce animations of their algorithms, affording
a clearer means of conveying essential ideas to their
audience. Both types of geometers can interactively
control the flow of execution and easily generate or
visually specify degenerate input data.

Degree-driven algorithm design encourages robust
geometric computing by minimizing an algorithm’s
arithmetic precision with its running time and space
[5]. Millman built a C++ library (DDAD) to facilitate
the implementation of these algorithms; our aim is
to build a workbench to support users of DDAD. The
creation of this workbench mostly requires the appli-
cation of techniques developed in previous software
visualization research, but the addition of precision

∗Department of Computer Science, University of North Car-
olina at Chapel Hill. Email: {snoeyink,freeman}@cs.unc.edu

Figure 1: A user watches as Melkman’s algorithm
handles a degenerate situation.

as a constraint provides for new avenues of explo-
ration.

We begin by briefly reviewing previous workbench
systems. Next, we explain how our current system’s
facilities satisfy each user type and significant deci-
sions we made during their implementation. Finally,
we conclude with a discussion of how we can extend
our system moving forward.

2 Previous Work

Initially, we spent some time reviewing existing soft-
ware visualization systems to see if any might help
us implement and present our algorithms. In 1997,
Dobkin and Hausner [4] reviewed four geometric visu-
alization systems: Workbench, XYZ GeoBench, Ge-
omview, and GASP. Unfortunately, while these sys-
tems presented different ways of solving foundational
challenges, support has long been discontinued. We
also considered the Geometry Center’s GeoLab [2]
and Stasko’s [7] more general algorithm animation
software such as POLKA, SAMBA, and XTANGO,
and found them similarly unsupported. Lacking a
working geometric workbench, we decided to build
our own system.

3 User Facilities

Two simple 2D convex hull algorithms, SlowConvex-
Hull [1] and Melkman’s algorithm [6], provided

1



the initial target inputs for the system. For each
algorithm, we first programmed an implementation,
then recorded animations of them running on exam-
ple input data to produce a corresponding Youtube
video 1. This development process placed us in
the position of both implementer and presenter, and
led us to develop facilities appropriate for both user
types.

As implementers, we desired a system with four
major capabilities. First, we needed a means of ma-
nipulating input data into degenerate situations to
test that special cases were handled correctly. Sec-
ond, we needed to run the algorithm and visually
display the results of final and intermediate calcula-
tions. Third, upon discovering an incorrect result, we
needed to single step the algorithm from the begin-
ning on the same input data in order to see where
the algorithm went awry. Finally, we needed visual-
ization code to minimally invade our implementation
code.

In response, our system provides four correspond-
ing facilities. First, our system randomly generates
either a random point set or simple polyline, and
clicking and dragging moves vertices into different
configurations. Second, our system maintains dis-
play lists which are updated as interesting events [3]
occur. Third, our system uses threading to control
the speed of execution and provides UI controls for
starting, pausing, single stepping, and resetting the
algorithm. Finally, our system embeds low level vi-
sualization functions in higher level geometric types
to maintain code readability and ensure visualization
consistency.

As presenters, implementer facilities already satis-
fied many of our needs, producing animations that
captured the essential characteristics of each algo-
rithm. However, we desired two additional capabili-
ties: we needed to convey information not necessary
for implementation purposes, and view the same al-
gorithm in different ways. In response, our system
provides two corresponding facilities: visualizations
of arbitrary primitives that aren’t directly used by the
algorithm, and a passive model-view-controller archi-
tecture that can be extended with custom views.

4 Engineering Decisions

Two engineering decisions are of particular inter-
est. First, we wanted to use model-view-controller
to structure our design, but needed the traditional
model concept to encompass a geometric algorithm.

1See: http://cs.unc.edu/~freeman/GAV/

Extracting visual representations of operations and
data structures without user guidance is a difficult, if
not impossible, task. We decided to maintain a sepa-
rate visual model of display lists, which the algorithm
implicitly updates. Second, we needed to track visual
semantics on geometric primitives so previous states
could be restored (e.g. a hull segment is invalidated).
We decided to store a semantic stack for each prim-
itive; low level visualization functions push and pop
new states as the algorithm executes.

5 Conclusion

Implementing a geometric algorithm workbench is a
challenging task with a rich set of problems encom-
passing a variety of disciplines. While we continue
extending our system by animating more algorithms,
two questions provide opportunities for further ex-
ploration. First, how can we extend our workbench
to highlight precision as a resource? An answer will
help thematically differentiate the project from pre-
vious work. Second, given that so many past systems
fell into disuse, how can we build our workbench to
have better longevity? An answer will help solidify a
foundation for future work.

Our workbench continues to grow and has not yet
reached a state suitable for distribution to the ge-
ometry community. As the underlying design and
outward interface stabilize, we will release a version
for download 1.

References

[1] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.
Computational Geometry: Algorithms and Applications.
3rd edition, 2008.

[2] P. de Rezende and W. Jacometti. Animation of geomet-
ric algorithms using GeoLab. In Proceedings of the ninth
annual symposium on Computational geometry, SCG ’93,
pages 401–402, 1993.

[3] C. Demetrescu, I. Finocchi, and J. Stasko. Specifying Al-
gorithm Visualizations: Interesting Events or State Map-
ping? In Revised Lectures on Software Visualization, In-
ternational Seminar, pages 16–30, 2002.

[4] A. Hausner and D. P. Dobkin. Making Geometry Visi-
ble: An Introduction to the Animation of Geometric Algo-
rithms, 1997.

[5] G. Liotta, F. P. Preparata, and R. Tamassia. Robust prox-
imity queries: an illustration of degree-driven algorithm de-
sign. In Proceedings of the thirteenth annual symposium on
Computational geometry, SCG ’97, pages 156–165, 1997.

[6] A. Melkman. On-line construction of the convex hull of a
simple polyline. Inf. Process. Lett., 25(1):11–12, 1987.

[7] J. Stasko. Software Visualization research at GVU, 2011.
http://www.cc.gatech.edu/gvu/ii/softvis/.

2

http://cs.unc.edu/~freeman/GAV/
http://www.cc.gatech.edu/gvu/ii/softvis/

	Introduction
	Previous Work
	User Facilities
	Engineering Decisions
	Conclusion

