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1 Introduction
Trajectories are functions from a time domain—an inter-
val on the real line—to Rd with d > 1, and observed as
sequences of points sampled from them. A fundamental
problem in analyzing this data is that of identifying com-
mon patterns between pairs or among groups of trajecto-
ries observed as sequences of sampled points.

Let P = 〈p1, . . . , pm〉 and Q = 〈q1, . . . , qn〉 be two
sequences of points in Rd, sampled from two trajectories
γ1 and γ2 defined over the time interval [0, 1]. For sim-
plicity, we assume that P and Q are points sampled from
the images of the trajectories and we ignore the temporal
component.1 Since, in practice, the underlying continu-
ous trajectories γ1 and γ2 are not known but we observe
only the sampled points P and Q, we will work in the
discrete setting where we are only concerned with these
sample points. In this abstract, we will refer to the dis-
crete sample points P , Q as the input trajectories.

We wish to compute correspondences between points
belonging to similar portions of these trajectories while
distinguishing these portions from the dissimilar ones.
The following issues with trajectory sampling must
be taken into account when identifying similarity: (i)
significantly different sampling rates, (ii) presence of
noise/outliers which must be distinguished from dissim-
ilarities, and (iii) presence of significant unobserved por-
tions on the trajectories with no sample points.

Background. A common choice for measuring trajectory
similarity is the Fréchet distance [1] defined as follows. A
reparameterization is a continuous non-decreasing surjec-
tion α : [0, 1]→ [0, 1], such that α(0) = 0 and α(1) = 1.
The Fréchet distance Fr(γ1, γ2) is given by:

Fr(γ1, γ2) = inf
α,β

max
t∈[0,1]

‖γ1(α(t))− γ2(β(t))‖,

where ‖ · ‖ is the underlying norm (typically the Eu-
clidean norm), and α and β are reparameterizations of

1Strictly speaking, a trajectory is the graph of the underlying func-
tion, and what we have are the curves traced by the two trajectories, but
we will not distinguish between the two.
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Figure 1. Comparison of measures: (a) Fréchet distance, (b) average
Fréchet distance, (c) sequence alignment based method, (d) our model.
Green edges indicate correspondences.

[0, 1]. Since we only observe a finite set of sample points,
we may define a discrete version of the Fréchet distance
where the reparameterizations are discrete functions re-
stricted to the sampled points P and Q.

A set of correspondences yielding the optimal Fréchet
distance is not necessarily a good indicator of similar-
ity due to the large number of such correspondences; see
Fig. 1(a). The average Fréchet distance which minimizes
the average distance of the correspondences rather than
the maximum distance provides a better set of correspon-
dences. However, if there are significant dissimilar por-
tions, possibly due to actual deviations rather than out-
liers, the results are not meaningful due to the requirement
of correspondences for all points; see Fig. 1(b).

In computational biology, the technique of pairwise se-
quence alignment [2, cf. Chapter 2] is designed to distin-
guish similar and dissimilar portions between biological
sequences. Given two sequences A and B, their align-
ment is expressed by writing them in two rows such that
similar characters are placed in the same column. Charac-
ters in one sequence with no similar character in the other
sequence are aligned with a blank character. A maximal
contiguous sequence of blank characters is termed a gap.
The goal is to optimize a scoring function which assigns
a score for aligning two characters (incentive or penalty
depending on their similarity) and a penalty for gaps.

We may extend the sequence-alignment model to the
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Figure 2. Real data: (a) average Fréchet distance, (b) sequence alignment based approach, (c) our model. Green edges indicate correspondences.

alignment of trajectories with the choice of an appropri-
ate scoring function. However, as Fig. 1(c) shows, non-
uniform sampling rates cause similar portions to be des-
ignated as gaps since correspondences are one-to-one.

2 Model
As noted above, the average Fréchet distance yields good
correspondences for similar portions even with different
sampling rates while sequence alignment identifies dis-
similarities accurately. We capture the advantages of the
these two methods under a unifying notion of assign-
ments.

Definition 2.1. An assignment for P and Q is a pair of
functions α : P → Q ∪ {⊥} and β : Q → P ∪ {⊥}
for the points of P and Q respectively. If α(pi) = ⊥
(or β(qj) = ⊥), then pi (or qj) is called a gap point. A
maximal contiguous sequence of gap points in P or Q is
called a gap. An assignment is monotone if it satisfies the
following conditions: (i) if α(pi) = qj implies that for all
i′ > i, α(pi′) ∈ {⊥}∪{qj+1, . . . , qn}, (ii) β(qj) = pi im-
plies that for all j′ > j, β(qj′) ∈ {⊥} ∪ {pi+1, . . . , pm}.

Intuitively, if a point pi ∈ P lies on a similar portion of
the two trajectories then α(pi) defines the point on Q to
which pi corresponds, and pi is a gap point otherwise. A
similar interpretation holds for β(·). Let Γ(α, β) denote
the set of gaps in P and Q for the assignment α, β. We
define the score of α, β, denoted by σ(P,Q;α, β), as

σ(P,Q;α, β) =
∑
pi∈P
α(i)6=⊥

1

c+ ‖pi − α(pi)‖2

+
∑
qj∈Q
β(j)6=⊥

1

c+ ‖qj − β(qj)‖2
+

∑
g∈Γ(α,β)

(
a+ ∆ · |g|

)
,

where a,∆ and c are carefully chosen parameters, ‖ · ‖ is
the L2-norm and |g| is the length of a gap g. For a pair
of points pi ∈ P and qj ∈ Q, the difference in values
1/(c+‖pi− qj‖2 versus ∆ dictates the choice of whether
to assign α(pi) = qj or β(qj) = pi versus assigning one
or both as gap points. Thus, ∆ is chosen based on a dis-
tance threshold for similarity. The parameter a is used to

avoid extremely short gaps (of length less than l for some
l > 0) which may be due to outliers rather than actual
deviations and is set to −l∆.

A monotone assignment α, β which maximizes
σ(P,Q;α, β) may be found by a dynamic programming
algorithm in timeO(mn). This is essentially a more com-
plicated version of the algorithm for sequence alignment.
Fig. 1(d) shows the results which perform similarly to the
average Fréchet correspondences in the similar portions
while distinguishing the dissimilar portions as accurately
as the sequence alignment based approach.

3 Discussion
Our framework is not limited to the scoring function de-
scribed. For example, the sequence-alignment based ap-
proach, average Fréchet distance or other measures such
as adaptations of edit-distance are easily incorporated into
our model. Further, we may extend the dynamic pro-
gramming algorithm to compute locally similar portions
instead of global trajectory similarity in a manner similar
to local alignment of sequences.

We have conducted experiments comparing the aver-
age Fréchet distance, sequence alignment and our model
on a dataset of 145 trajectories of school buses in Athens,
Greece [3]. Fig. 2 shows the comparison for a pair of tra-
jectories from this set. As is clearly seen, sequence align-
ment “finds” the dissimilar portions accurately but the on
close examination, we note that there are gaps even in the
similar portions. This is rectified by our model which per-
forms similarly to average Fréchet distance in the similar
portions while avoiding dissimilar portions accurately.
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