GENI real time workshop, Reston VA, 6,7 Feb 2006

Assurance, Security, Certification for GENI

John Rushby

Computer Science Laboratory SRI International Menlo Park CA USA

John Rushby, SRI

Assurance, Security, Certification: 1

Certification

- Terminology differs across fields, but generally...
- Certification is a societal or institutional judgment that some system is safe or secure or... enough for some specific application in some specific context
 - Have to show you thought of everything
 - The challenge of "unbounded relevance"
- Assurance is the technical analysis in support of certification
 - Makes clear what you did think of
 - $\circ~$ And how you dealt with it
- Another good research topic:
 - Move the boundary between these
 - In favor of more technical analysis
 - GENI could contribute to this

For Example

- InterPeak (Swedish company) are building a secure TCP/IP stack for EAL6+ evaluation
- First step is to identify the threat model
- Then construct the Protection Profile (PP)
 - And get agreement on that
- Then develop the stack following the processes of the PP
 - And provide the technical assurance specified in the PP
- Certifiers decide if they believe any of this
 - And if it's good enough for their application
 - And environment
 - Maybe with restrictions (e.g., TS and S only)

State of the Art in Assurance

- Traditionally, lots of process stuff, lots of testing
- Increasingly it means formal methods
- Due to
 - More complex, higher risk systems (e.g., IMA)
 - Recent big advances in automated formal methods
 - And better integ'n with trad'l development practices
 - * Move to model-based design (MBD)
 - \star FM extended to design exploration, debugging, testing
- Cost and practicality depend on type of system considered, nature of assumed environment, properties of interest, level of description (model vs. code), and scale of system

John Rushby, SRI

For Example: Safety Critical System Frameworks

- System is designed to be synchronous (deterministic)
 - $\circ~$ Built on an integration framework such as TTA
 - Guarantees certain properties of systems built on it
 - $\star\,$ Solves the hard problems once and for all
 - * Composability (preservation of prior properties)
 - * And compositionality (reason from parts to whole)
 - Without cooperation of components outside framework
- Environment may inject faults
- Properties are technical safety properties (mostly invariants)
 - Eventuality properties are bounded
 - May involve real time
- Description of the framework is at the level of algorithms and models (could go down to implementation)
- Scale is modest (tens of KLSOC)

SOA in Formal Methods

- Massive advances in power of automated reasoning methods
 - Use of SAT solvers, emergence of SMT solvers
 - Abstract interpretation
- Powerful methods for using these (automated abstractions)
 - Predicate abstraction, Craig interpolation, CEGAR
 - Infinite bounded model checking, k-induction
- Highly customized automation for special purposes
 - Static analysis, ESC, software model checkers, PCC
- And integration methods for putting things back together
 - Evidential tool bus

Satisfiability Modulo Theories (SMT)

- Individual decision procedures decide conjunctions of formulas in their decided theories
- Combinations of decision procedures (using, e.g., Nelson-Oppen or Shostak methods) decide conjunctions over the combined theories (e.g., arithmetic plus arrays)
- SMT allows general propositional structure

e.g., (x ≤ y ∨ y = 5) ∧ (x < 0 ∨ y ≤ x) ∧ x ≠ y
 ... possibly continued for 1000s of terms

- Should exploit search strategies of modern SAT solvers
- So replace the terms by propositional variables $\circ \ (A \lor B) \land (C \lor D) \land E$
- Get a solution from a SAT solver (if none, we are done)
 e.g., A, D, E

Lemmas On Demand

• Restore the interpretation of variables and send the conjunction to the core decision procedure

 \circ e.g., $x \leq y \wedge y \leq x \wedge x \neq y$

- If satisfiable, we are done
- If not, ask SAT solver for a new assignment—but isn't it expensive to keep doing this?
- Yes, so first, do a little bit of work to find fragments that explain the unsatisfiability, and send these back to the SAT solver as additional constraints (i.e., lemmas)

 $\circ \ A \wedge D \supset \neg E$

- Iterate to termination (e.g., B, D, E: y = 5, y < x: y = 5, x = 6)
- This is called "lemmas on demand" or "DPLL(T)"
- it works really well: yields effective SMT solvers

John Rushby, SRI

SMT Solvers

- SMT solvers are being honed by competition
- Various divisions (depending on the theories considered)
 - Equality and uninterpreted functions
 - Difference logic (x y < c)
 - Full linear arithmetic
 - \circ ... for integers as well as reals
 - Arrays
- Next competition at FLoC (Seattle, Summer 2006)
- SMT solvers enable infinite bounded model checking, and powerful backends to interactive theorem provers

Example: Real Time

- Traditionally hard for automated analysis because continuous time excludes finite state methods
- Timed automata methods handle continuous time
 - But defeated by the case explosion when (discrete) faults are considered
- SMT solvers can handle both dimensions
 - Timeout automata, k-induction, disjunctive invariants
- E.g., Biphase Mark Protocol for asynchronous communic'n
 - Clocks at either end have different skew, rates, jitter
 - $\circ~$ So have to encode a clock in the data stream
 - Used in CDs, Ethernet
 - Verify parameter values for reliable transmission

Real Time: Biphase Mark (ctd)

- First verified by human-guided proof in ACL2 by J Moore
- Three different verifications used PVS
 - $\circ~$ One by Groote and Vaandrager used ${\sf PVS}$ + ${\sf UPPAAL}$
 - Required 37 invariants, 4,000 proof steps, hours of prover time to check
- Brown and Pike recently did it with sal-inf-bmc
 - Three lemmas proved automatically with 1-induction,
 - Statement of theorem discovered systematically using disjunctive invariants (7 disjuncts)
 - Theorem proved automatically using 5-induction
 - Verification takes seconds to check
- Adapted verification to 8-N-1 protocol (used in UARTs)
 - Revealed a bug in published application note

Analysis of Security Properties/Secure Systems

- Topmost properties are slippery
 - Noninterference is not a property
 - Does not compose or refine nicely

Usual to impose safety properties that are stronger than noninterference

- New trend (revival of an old one): MILS
 - Development and automated verification of commercial separation kernels is well under way
 - These are integration framework for security, just like TTA for safety in IMA
- But the real challenge is a development and verification process for systems built on these
 - $\circ~$ Should exploit deconstruction opportunities of MILS

Analysis of Security Properties/Secure Systems (ctd)

- Security protocols
 - Authentication etc. are pretty well solved
 - Challenges are in subtle properties: anonymity, etc.

• Possible opportunity for GENI

- $\circ~$ Not just secure communications
- But an integration framework for distributed secure systems

Analysis of Networking/Networked Systems

- Mostly focus on variants of the asynchronous model
 - Failure detectors
 - Partial and timed asynchrony of various kinds
- Harder to reason about than synchronous systems

• And harder actually to achieve properties of interest Because one must deal with tricky eventuality arguments

- Modest progress; most verifications require human guidance
- Possible opportunity for GENI
 - An internet with synchronous guarantees
 - Cf. Verissimo's timely computer base

Would allow simpler assurance arguments for properties of complex distributed systems

Other Areas

- Protocols
 - Model checkers inside J-Sim
- Code level analysis
 - Recent rapid advances by focusing on limited properties
 - Highly customized verifiers
 - Microsoft: SDV
 - Airbus: Caveat (INRIA), Astree (Cousot), AbsInt (Wilhelm)
- Hybrid Systems
 - This is the formal methods technology for analysis and synthesis of control systems
 - Big recent advances based on abstraction
 - And automated theorem proving
 - Successful application to biology

Summary

- Assurance, certification need a compositional systems view
- A focus for GENI could be as an integration framework
 - For safely synchronous, secure, real time systems
 - Deliver minimal compositional properties to clients that ease their assurance and certification tasks
 - $\circ~$ In Helen's terms: migrate edge concerns into the core
 - In Lui's terms: reinterpret some QoS in terms of composable properties
 - Could help save us from conseq's of accidental systems
- Formal analysis technology will be ready when you are
- Probably