Unsupervised morphological segmentation and clustering with document boundaries

Taesun Moon Katrin Erk and Jason Baldridge

Department of Linguistics University of Texas at Austin 1 University Station B5100 Austin, TX 78712-0198 USA

Empirical Methods in Natural Language Processing 2009

1 / 1

Introduction

Morphology acquisition

Morphology acquisition involves one or more of ...

- Segmentation of a word into constituent morphemes
 - ightharpoonup inflectional: morphemes = morpheme + s
 - derivational: segmentation = segment + ation
 - ightharpoonup indiscriminate: morphemes = morph + eme + s
- Clustering of words which are morphological variants cluster, clusters, clustered, clustering
- Generation of unobserved, inflected/derived word forms morpheme → morphemes

Introduction

Goals

Aid language documentation

- Documentation of endangered languages before they disappear
- Analysis of language data: typically by human annotators
- Aim: aid analysis using unsupervised machine learning
- Morphological preprocessing important part of producing Interlinearized Glossed Text

Use on data from endangered languages

- Allow use out of the box
- Minimize number of parameters
- Work with small amounts of data

Introduction

Core ideas

The core ideas of the model are ...

- filter affixes by significant co-occurrence
- use document boundaries to eliminate noise

Overview

Stage I. Candidate Generation

- Build a trie from the lexicon of a document/all documents
- Split word into stem and affixes if paths after a branch are shorter than the path from the root to the branch
- Collect counts and pairwise counts for affixes

Figure: \rightarrow neutral edges, \rightarrow edges to affixes

Affixes (counts)

\$ (2), s (1), d (2), ed (1), ory (1)

Pairs (counts)

\$/d (2), ory/e (1), ory/ed (1), e/ed (1)

Stage II. Candidate Filtering

Filtering rule

Only retain affix pairs which are significantly correlated under χ^2 test.

Sample counts: Doc

	ed	\sim ed
ing	10273	21853
\sim ing	27120	4119332

Table: $\chi^2 = 352678$

	le	\sim le
S	122	132945
\sim s	936	4044575

Table: $\chi^2 = 239.132$

Sample Counts: Global

	ed	\sim ed
ing	2651	1310
\sim ing	1490	150848

Table: $\chi^2 = 65101.6$

	le	\sim le
S	20	12073
\sim s	198	144008

Table: $\chi^2 = 0.631(p = 0.427)$

Stage III & IV

Stage III. Affix clustering

- Bottom up, minimum distance clustering
- Cluster membership is not exclusive and thus clusters are not disjoint

Stage IV. Word clustering

Cluster words iff

- the words occurred in the same document / global lexicon
- they have a shared path longer than some length in a trie defined for the document / global lexicon
- the affixes for these words belong to a cluster induced in stage iii.

Data

Training data

- two languages: English and Uspanteko
- for English, two data sets from NYTimes
 - one large (9M tokens), one small (187K tokens)
 - ▶ to simulate effect of small data sizes
- Uspanteko: Mayan language of K'ichee' branch with approx. 1320 speakers
- for Uspanteko, an even smaller data set (50K words)

English gold data

evaluate on the *inflectional* morphology portion of CELEX.

Uspanteko gold data

- use gold data from documentation project
- manually evaluate subsample of output

Metric

Basic counts

- Calculate numbers for correct (C), inserted (\mathcal{I}) and deleted (\mathcal{D}) words.
- Take into account overlapping clusters
- Modification of Schone & Jurafsky (2001)

Scoring formula

Calculate precision (P), recall (R) and f-score (F):

$$P = C/(C+T)$$

$$R = C/(C+D)$$

$$F = (2PR)/(P+R)$$

Results: English

	MINI-NYT		NYT			
	Р	R	F	Р	R	F
LINGUISTICA	64.30	93.34	76.15	47.50	88.33	61.77
Morfessor	45.2	87.8	59.7	63.6	69.2	66.3
$\overline{\textit{Cand-D} + \textit{Clust-G}}$	69.41	91.42	78.91	46.00	79.81	58.36
Cand-D + Clust-D	83.47	80.36	81.89	59.02	74.50	65.86
Cand-G + Clust-G	73.44	88.72	80.36	61.81	82.98	70.85
Cand-G + Clust-D	88.34	77.95	82.82	77.71	70.24	73.79

Table: Benchmarks performed with LINGUISTICA (Goldsmith, 2001) and Morfessor (Creutz and Lagus, 2007). (Cand = candidate generation; Clust = clustering; D = document-wise; G = global)

Results: Uspanteko (machine evaluation)

	Р	R	F
Cand-G + Clust-D	95.42	47.89	63.78
Cand-G + Clust-G	92.03	50.01	64.80
LINGUISTICA	81.14	47.60	60.00
LINGUISTICA	84.15	52.00	64.28
Morfessor	28.12	62.28	38.75

Table: Cand = candidate generation; Clust = clustering; D = document-wise; G = global

Results: Uspanteko (expert evaluation)

	Acc.	FAcc.	Avg. Sz.
Cand-G + Clust-G	98.5	79.0	2.94
Linguistica	96.0	85.0	2.64
Morfessor	85.3	55.0	4.8

Table: Human expert evaluated accuracy (Acc.), full cluster accuracy (FAcc.) and average cluster size in words (Avg. Sz.). Conducted on 100 non-singleton cluster subsamples. Full cluster accuracy is the number of clusters with no errors divided by subsample size (100)

Discussion I

Interaction of affix criterion and tries

- Global candidate generation more effective in filtering out spurious forms
- only long words generate candidates in global candidate generation
- chance of morphologically unrelated but orthographically similar short words coöccurring in same document increases with data size
- morphologically unrelated but orthographically similar words do generate candidates in global candidate generation but counts are suppressed

Discussion II

Summary

- Document clustering is effective in filtering out spurious members
- Document candidate generation enhances recall for small data sets.
- Model outperforms LINGUISTICA and MORFESSOR in terms of f-score and precision in all experiments.
- Model is simple, intuitive and flexible

Discussion III

Future work

- Approach not suited for languages with more complex morphology,
 e.g. agglutinative languages
- Performance deteriorates as size of data increases
 - perhaps phenomenon restricted to languages with relatively impoverished morphological inventory
 - similar results observed for English with LINGUISTICA here and MORFESSOR in Creutz and Lagus (2005).
 - approach seems feasible even with limited data for such languages