### Utility Theory, Minimum Effort, and Predictive Coding

#### Fabrizio Sebastiani (Joint work with Giacomo Berardi and Andrea Esuli)

Istituto di Scienza e Tecnologie dell'Informazione Consiglio Nazionale delle Ricerche 56124 Pisa, Italy

DESI V – Roma, IT, 14 June 2013

<ロト <四ト <注入 <注下 <注下 <

### What I'll be talking about

• A talk about text classification ("predictive coding"), about humans in the loop, and about how to best support their work

• I will be looking at scenarios in which

- text classification technology is used for identifying documents belonging to a given class / relevant to a given query ...
- ... but the level of accuracy that can be obtained from the classifier is not considered sufficient ...
- ... with the consequence that one or more human assessors are asked to inspect (and correct where appropriate) a portion of the classification decisions, with the goal of increasing overall accuracy.
- How can we support / optimize the work of the human assessors?

### What I'll be talking about

- A talk about text classification ("predictive coding"), about humans in the loop, and about how to best support their work
- I will be looking at scenarios in which
  - text classification technology is used for identifying documents belonging to a given class / relevant to a given query ...
  - In but the level of accuracy that can be obtained from the classifier is not considered sufficient ...
  - ... with the consequence that one or more human assessors are asked to inspect (and correct where appropriate) a portion of the classification decisions, with the goal of increasing overall accuracy.
- How can we support / optimize the work of the human assessors?

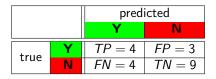
### What I'll be talking about

- A talk about text classification ("predictive coding"), about humans in the loop, and about how to best support their work
- I will be looking at scenarios in which
  - text classification technology is used for identifying documents belonging to a given class / relevant to a given query ...
  - In but the level of accuracy that can be obtained from the classifier is not considered sufficient ...
  - ... with the consequence that one or more human assessors are asked to inspect (and correct where appropriate) a portion of the classification decisions, with the goal of increasing overall accuracy.

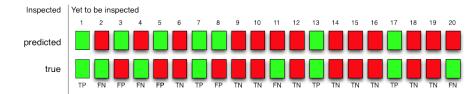
ヘロト ヘヨト ヘヨト

• How can we support / optimize the work of the human assessors?

### A worked out example

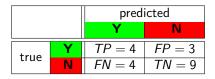


$$F_1 = \frac{2TP}{2TP + FP + FN} = 0.53$$



Fabrizio Sebastiani (Joint work with Giacomo Berardi and Andrea Esuli)

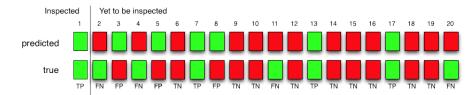
### A worked out example (cont'd)



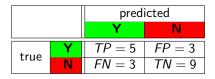
$$F_1 = \frac{2TP}{2TP + FP + FN} = 0.53$$

イロト イボト イヨト イヨト

-



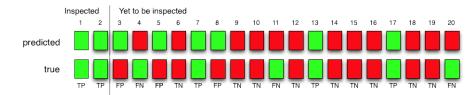
### A worked out example (cont'd)



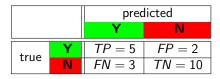
$$F_1 = \frac{2TP}{2TP + FP + FN} = 0.63$$

イロト イボト イヨト イヨト

-



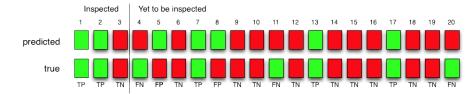
### A worked out example (cont'd)



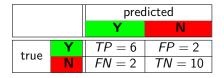
$$F_1 = \frac{2TP}{2TP + FP + FN} = 0.67$$

イロト イボト イヨト イヨト

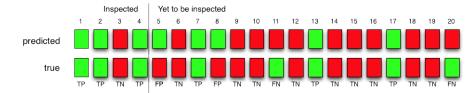
-



### A worked out example (cont'd)



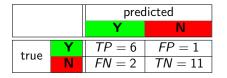
$$F_1 = \frac{2TP}{2TP + FP + FN} = 0.75$$



Fabrizio Sebastiani (Joint work with Giacomo Berardi and Andrea Esuli)

・ロト・西ト・ヨト・ヨー めんの

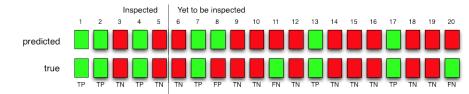
### A worked out example (cont'd)



$$F_1 = \frac{2TP}{2TP + FP + FN} = 0.80$$

イロト イボト イヨト イヨト

-



## What I'll be talking about (cont'd)

#### • We need methods that

- given a desired level of accuracy, minimize the assessors' effort necessary to achieve it; alternatively,
- given an available amount of human assessors' effort, maximize the accuracy that can be obtained through it
- This can be achieved by ranking the automatically classified documents in such a way that, by starting the inspection from the top of the ranking, the cost-effectiveness of the annotators' work is maximized
- We call the task of generating such a ranking Semi-Automatic Text Classification (SATC)

< □ > < 同 > < 三 > < 三 >

## What I'll be talking about (cont'd)

- We need methods that
  - given a desired level of accuracy, minimize the assessors' effort necessary to achieve it; alternatively,
  - given an available amount of human assessors' effort, maximize the accuracy that can be obtained through it
- This can be achieved by ranking the automatically classified documents in such a way that, by starting the inspection from the top of the ranking, the cost-effectiveness of the annotators' work is maximized
- We call the task of generating such a ranking Semi-Automatic Text Classification (SATC)

- 4 同 ト 4 三 ト 4 三 ト

### What I'll be talking about (cont'd)

- Previous work has addressed SATC via techniques developed for "active learning"
- In both cases, the automatically classified documents are ranked with the goal of having the human annotator start inspecting/correcting from the top; however
  - in active learning the goal is providing new training examples
  - in SATC the goal is increasing the overall accuracy of the classified set
- We claim that a ranking generated "à la active learning" is suboptimal for SATC<sup>1</sup>

<sup>1</sup>G Berardi, A Esuli, F Sebastiani. A Utility-Theoretic Ranking Method for Semi-Automated Text Classification. Proceedings of the 35th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2012), Partland, US, «2@12. ( ) )

### What I'll be talking about (cont'd)

- Previous work has addressed SATC via techniques developed for "active learning"
- In both cases, the automatically classified documents are ranked with the goal of having the human annotator start inspecting/correcting from the top; however
  - in active learning the goal is providing new training examples
  - in SATC the goal is increasing the overall accuracy of the classified set
- We claim that a ranking generated "à la active learning" is suboptimal for SATC<sup>1</sup>

<sup>1</sup>G Berardi, A Esuli, F Sebastiani. A Utility-Theoretic Ranking Method for Semi-Automated Text Classification. Proceedings of the 35th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2012), Portland, US, 2012.

## Outline of this talk

- We discuss how to measure "error reduction" (i.e., increase in accuracy)
- We discuss a method for maximizing the expected error reduction for a fixed amount of annotation effort

< ロ > < 同 > < 回 > < 回 > .

-

We show some promising experimental results

### Outline

#### 1 Error Reduction, and How to Measure it

2 Error Reduction, and How to Maximize it



#### ▲ロ > ▲団 > ▲目 > ▲目 > ▲目 > ④ < ⊙

### Error Reduction, and how to measure it

Assume we have

- class (or "query") c;
- classifier h for c;
- set of unlabeled documents D that we have automatically classified by means of h, so that every document in D is associated

向下 イヨト イヨト

- with a binary decision (Y or N)
- with a confidence score (a positive real number)
- measure of accuracy A, ranging on [0,1]

### Error Reduction, and how to Measure it (cont'd)

• We will assume that A is

$$F_{1} = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall} = \frac{2 \cdot TP}{(2 \cdot TP) + FP + FN}$$

but any "set-based" measure of accuracy (i.e., based on a contingency table) may be used

- An amount of error, measured as E = (1 A), is present in the automatically classified set D
- Human annotators inspect-and-correct a portion of *D* with the goal of reducing the error present in *D*

イロト イヨト イヨト ・

• We will assume that A is

$$F_{1} = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall} = \frac{2 \cdot TP}{(2 \cdot TP) + FP + FN}$$

but any "set-based" measure of accuracy (i.e., based on a contingency table) may be used

- An amount of error, measured as E = (1 A), is present in the automatically classified set D
- Human annotators inspect-and-correct a portion of *D* with the goal of reducing the error present in *D*

イロト イポト イヨト ・ ヨ

- We define error at rank *n* (noted as *E*(*n*)) as the error still present in *D* after the annotator has inspected the documents at the first *n* rank positions
  - E(0) is the initial error generated by the automated classifier
  - *E*(|*D*|) is 0
- We define error reduction at rank n (noted as ER(n)) to be

$$ER(n) = \frac{E(0) - E(n)}{E(0)}$$

the error reduction obtained by the annotator who inspects the docs at the first n rank positions

・ロト ・回ト ・ヨト ・ヨト

- $ER(n) \in [0,1]$
- ER(n) = 0 indicates no reduction
- ER(n) = 1 indicates total elimination of error

- We define error at rank *n* (noted as *E*(*n*)) as the error still present in *D* after the annotator has inspected the documents at the first *n* rank positions
  - $\bullet~E(0)$  is the initial error generated by the automated classifier
  - E(|D|) is 0
- We define error reduction at rank n (noted as ER(n)) to be

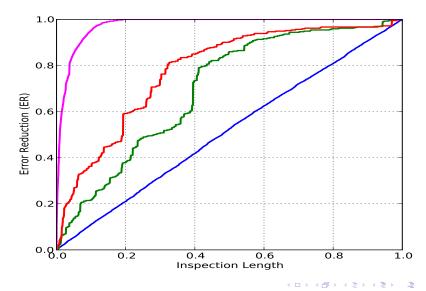
$$ER(n) = \frac{E(0) - E(n)}{E(0)}$$

the error reduction obtained by the annotator who inspects the docs at the first n rank positions

・ 同 ト ・ ヨ ト ・ ヨ ト

- *ER*(*n*) ∈ [0, 1]
- ER(n) = 0 indicates no reduction
- ER(n) = 1 indicates total elimination of error

### Error Reduction, and how to Measure it (cont'd)





#### Error Reduction, and How to Measure it

### 2 Error Reduction, and How to Maximize it



<□> <□> <□> <=> <=> <=> ○○

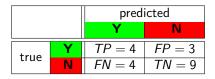
### Error Reduction, and how to Maximize it

#### Problem

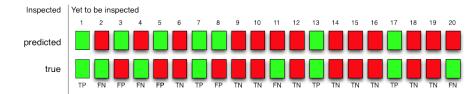
How should we rank the documents in D so as to maximize the expected error reduction?

イロト イヨト イヨト ・

### A worked out example



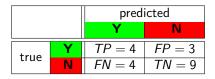
$$F_1 = \frac{2TP}{2TP + FP + FN} = 0.53$$



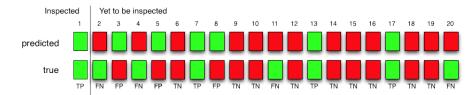
Fabrizio Sebastiani (Joint work with Giacomo Berardi and Andrea Esuli)

・ロト・日本・日本・日本・ 日本 ろんの

### A worked out example (cont'd)

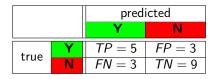


$$F_1 = \frac{2TP}{2TP + FP + FN} = 0.53$$



Fabrizio Sebastiani (Joint work with Giacomo Berardi and Andrea Esuli)

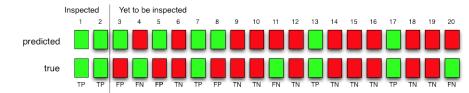
### A worked out example (cont'd)



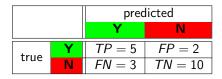
$$F_1 = \frac{2TP}{2TP + FP + FN} = 0.63$$

< ロ > < 同 > < 三 > < 三 > 、

3



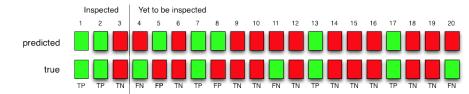
### A worked out example (cont'd)



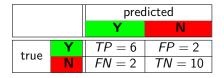
$$F_1 = \frac{2TP}{2TP + FP + FN} = 0.67$$

イロト 不得 トイヨト イヨト

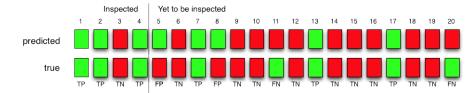
3



### A worked out example (cont'd)



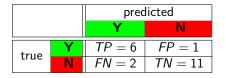
$$F_1 = \frac{2TP}{2TP + FP + FN} = 0.75$$



Fabrizio Sebastiani (Joint work with Giacomo Berardi and Andrea Esuli)

・ロト・西ト・ヨト・ヨー もく

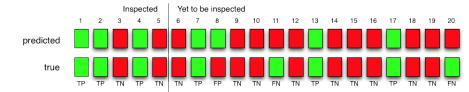
### A worked out example (cont'd)



$$F_1 = \frac{2TP}{2TP + FP + FN} = 0.80$$

< ロ > < 同 > < 三 > < 三 > 、

-



### Error Reduction, and how to Maximize it

- Problem: how should we rank the documents in *D* so as to maximize the expected error reduction?
- Intuition 1: Documents that have a higher probability of being misclassified should be ranked higher
- Intuition 2: Documents that, if corrected, bring about a higher gain (i.e., a bigger impact on *A*) should be ranked higher
  - Here, consider that a false positive and a false negative may have different impacts on A (e.g., when  $A \equiv F_{\beta}$ , for any value of  $\beta$ )

<ロ> <問> < 同> < 回> < 回> < 三</p>

#### Bottom line

Documents that have a higher utility (= probability  $\times$  gain) should be ranked higher

### Error Reduction, and how to Maximize it

- Problem: how should we rank the documents in *D* so as to maximize the expected error reduction?
- Intuition 1: Documents that have a higher probability of being misclassified should be ranked higher
- Intuition 2: Documents that, if corrected, bring about a higher gain (i.e., a bigger impact on *A*) should be ranked higher
  - Here, consider that a false positive and a false negative may have different impacts on A (e.g., when  $A \equiv F_{\beta}$ , for any value of  $\beta$ )

#### Bottom line

Documents that have a higher utility (= probability  $\times$  gain) should be ranked higher

### Error Reduction, and how to Maximize it (cont'd)

• Given a set  $\Omega$  of mutually disjoint events, a utility function is defined as

$$U(\Omega) = \sum_{\omega \in \Omega} P(\omega) G(\omega)$$

where

- $P(\omega)$  is the probability of occurrence of event  $\omega$
- $G(\omega)$  is the gain obtained if event  $\omega$  occurs

• We can thus estimate the utility, for the aims of increasing A, of manually inspecting a document d as

 $U(TP, TN, FP, FN) = P(FP) \cdot G(FP) + P(FN) \cdot G(FN)$ 

イロト イポト イヨト イヨト

provided we can estimate

- If d is labelled with class c: P(FP) and G(FP)
- If d is not labelled with class c: P(FN) and G(FN)

• Given a set  $\Omega$  of mutually disjoint events, a utility function is defined as

$$U(\Omega) = \sum_{\omega \in \Omega} P(\omega) G(\omega)$$

where

- $P(\omega)$  is the probability of occurrence of event  $\omega$
- $G(\omega)$  is the gain obtained if event  $\omega$  occurs
- We can thus estimate the utility, for the aims of increasing A, of manually inspecting a document d as

$$U(TP, TN, FP, FN) = P(FP) \cdot G(FP) + P(FN) \cdot G(FN)$$

< 回 > < 三 > < 三 > -

provided we can estimate

- If d is labelled with class c: P(FP) and G(FP)
- If d is not labelled with class c: P(FN) and G(FN)

- Estimating P(FP) and P(FN) (the probability of misclassification) can be done by converting the confidence score returned by the classifier into a probability of correct classification
  - Tricky: requires probability "calibration" via a generalized sigmoid function to be optimized via *k*-fold cross-validation
- Gains G(FP) and G(FN) can be defined "differentially"; i.e.,
  - The gain obtained by correcting a *FN* is  $(A^{FN \rightarrow TP} A)$
  - The gain obtained by correcting a *FP* is  $(A^{FP \to TN} A)$
  - Gains need to be estimated by estimating the contingency table on the training set via *k*-fold cross-validation

<ロ> (四) (四) (三) (三) (三) (三)

• Key observation: in general,  $G(FP) \neq G(FN)$ 

- Estimating P(FP) and P(FN) (the probability of misclassification) can be done by converting the confidence score returned by the classifier into a probability of correct classification
  - Tricky: requires probability "calibration" via a generalized sigmoid function to be optimized via *k*-fold cross-validation
- Gains G(FP) and G(FN) can be defined "differentially"; i.e.,
  - The gain obtained by correcting a *FN* is  $(A^{FN \rightarrow TP} A)$
  - The gain obtained by correcting a *FP* is  $(A^{FP \to TN} A)$
  - Gains need to be estimated by estimating the contingency table on the training set via *k*-fold cross-validation

イロン イロン イヨン イヨン 三日

• Key observation: in general,  $G(FP) \neq G(FN)$ 

- Estimating P(FP) and P(FN) (the probability of misclassification) can be done by converting the confidence score returned by the classifier into a probability of correct classification
  - Tricky: requires probability "calibration" via a generalized sigmoid function to be optimized via k-fold cross-validation
- Gains G(FP) and G(FN) can be defined "differentially"; i.e.,
  - The gain obtained by correcting a *FN* is  $(A^{FN \rightarrow TP} A)$  The gain obtained by correcting a *FP* is  $(A^{FP \rightarrow TN} A)$

  - · Gains need to be estimated by estimating the contingency table on the training set via k-fold cross-validation

・ロット (四) ( (日) (日) (日) (日)

• Key observation: in general,  $G(FP) \neq G(FN)$ 

### Outline

#### Error Reduction, and How to Measure it

Error Reduction, and How to Maximize it



▲ロ > ▲団 > ▲目 > ▲目 > ▲目 > ④ < ⊙

### Some Experimental Results

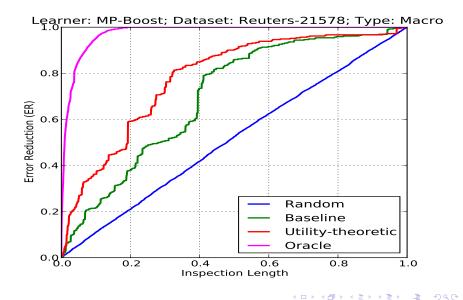
- $\bullet$  Learning algorithms: MP-BOOST, SVMs
- Datasets:

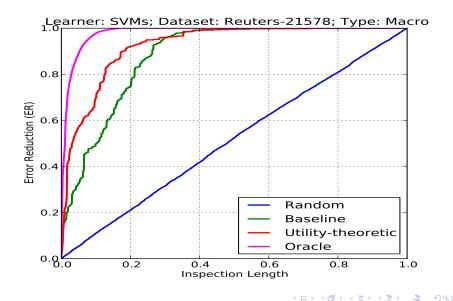
|               | # Cats | # Training | # Test | $F_1^M$ MP-BOOST | F <sup>M</sup> <sub>1</sub> SVMs |
|---------------|--------|------------|--------|------------------|----------------------------------|
| Reuters-21578 | 115    | 9603       | 3299   | 0.608            | 0.527                            |
| OHSUMED-S     | 97     | 12358      | 3652   | 0.479            | 0.478                            |

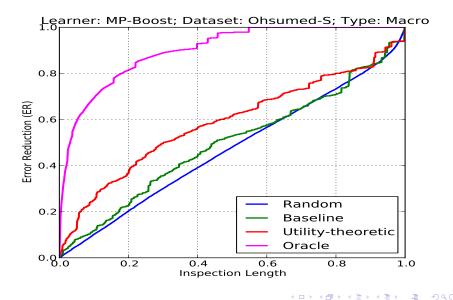
< ロ > < 同 > < 回 > < 回 > .

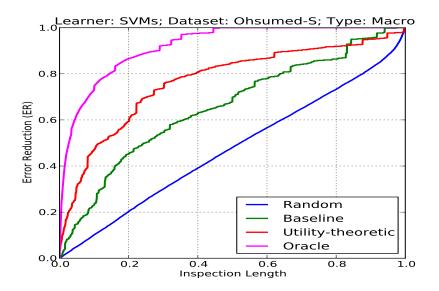
3

• Baseline: ranking by probability of misclassification, equivalent to applying our ranking method with G(FP) = G(FN) = 1









◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

### A few side notes

- This approach allows the human annotator to know, at any stage of the inspection process, what the estimated accuracy is at that stage
  - Estimate accuracy at the beginning of the process, via  $k\mbox{-fold cross}$  validation
  - Update after each correction is made
- This approach lends itself to having more than one assessor working in parallel on the same inspection task
- Recent research I have not discussed today :
  - A "dynamic" SATC method in which gains are updated after each correction is performed

イロト イポト イヨト イヨト

• "Microaveraging" and "Macroaveraging" -oriented methods

## **Concluding Remarks**

- Take-away message: Semi-automatic text classification needs to be addressed as a task in its own right
  - Active learning typically makes use of probabilities of misclassification but does not make use of gains ⇒ ranking "à la active learning" is suboptimal for SATC
- The use of utility theory means that the ranking algorithm is optimized for a specific accuracy measure  $\Rightarrow$  Choose the accuracy measure the best mirrors your applicative needs (e.g.,  $F_{\beta}$  with  $\beta > 1$ ), and choose it well!
- SATC is important, since in more and more application contexts the accuracy obtainable via completely automatic text classification is not sufficient; more and more frequently humans will need to enter the loop

イロト イポト イヨト イヨト

# Thank you!

イロト イヨト イヨト イヨト

= 990