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The fact that ‘predictive coding’ (PC) is not a well-defined term hasn’t impeded the popularity of whatever
it refers to. Since Legal Tech 2012, PC is everywhere: in the press, in the courts, and especially, in press
releases and marketing materials. Whatever it is, people want it.

One way to think of PC is as a response to the convergence of dynamic market forces:

• volume continues to skyrocket, with no sign of stalling;

• estimates of the quality of human linear review are trending downward;

• comparisons of human linear review to technology assisted review have been favorable to the technology
side;

• courts are beginning to recognize the value of PC technology in review, in a way related to the recognized
importance of ‘proportionality’ of costs to value.

From this perspective, the core attribute of PC is the de-linking of volume and cost, while maintaining or
improving quality. But there are other valuable perspectives on PC. At first glance, the range of available PC
systems and solutions is bewildering. A closer look reveals that the landscape is governed by a small number
of structural choices—choices posed by the problems that predictive coding confronts. The goal of this paper
is to isolate these structural choices and to show how particular responses to them provide a characterization
of both the predictive coding systems themselves and also their range of applications. One justification
for this goal is simple: characterizing the structural choices of PC solutions yields a clearer delineation
of the range of systems available in principle and a clearer understanding of the different advantages and
disadvantages of the particular systems available in the current e-Discovery marketplace. A core reason to
focus on the range and compatibility of structural choices rather than particular technologies is that some
of the relevant technology components play different structural roles in different structural configuations.

A note on terminology: the terms ‘predictive coding’, ‘technology assisted review’ (TAR), and sometimes
‘computer assisted review’ (CAR) are at times conflated. In what follows, we use the term ‘predictive
coding’ in a specific sense to denote review systems and protocols in which one or more documents are
coded or labeled with review-sensitive information (‘responsive’ (R), ‘non-responsive’ (NR), etc.) without
direct document-particular human supervision. (Of course, valuable systems of predictive coding will apply
non-individual document coding to many more documents than just one. But we can draw a principled
line at a single document.) In contrast, in human linear review—non-predictive coding—every label on
every document is supplied through direct human judgment. In this terminology, then, ‘predictive coding’
stands in direct contrast to human linear review. If we take ‘technology assisted review’ and ‘computer
assisted review’ in their natural interpretations, these phrases apply to any form of review assisted or aided
by technology or computation—including many systems that do not apply any form of predictive coding.
(Anyone using MD5 hashes for review deduplication is using TAR/CAR. But they’re not necessarily using
PC.)

1The views expressed in this paper are those of the authors and do not necessarily represent the views of Ernst & Young
LLP.
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Figure 1: the basic structural landscape of review

1 The Basic Landscape

The EDRM has released a draft of a Computer Assisted Review Reference Model, aiming to document the
steps in a generic vision of technology assisted review.2 But the focus on the steps in the process glosses
over the critical nature of what the possible steps are and what constrains their combinations. In our sketch
of the Basic Landscape in Figure 1, we emphasize these underlying structural choices.

The basic problem of E-Discovery is to identify within a universe of potentially responsive documents
the subset that is responsive to a specification of some kind (a request for production, a subpoena, a 2nd
request, . . . ). Thus, we have two basic models: a model of the documents and a model of the request for
production (or: ‘RFP’). Review and production depends on both models. A single document collection can
be the universe of potentially responsive documents for a variety of different matters. If the RFP’s of these
matters are different, productions are likely to be different as well. In general, production does not depend
only on the document collection; it depends equally on the RFP. Not surprisingly, then, the way in which
these two models—the document model and the RFP model—are brought into contact in review structurally
illuminates many intuitive and familiar distinctions in the review landscape.

2http://www.edrm.net/resources/carrm.
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1.1 linear review

In linear review, reviewers who have absorbed the information contained in the request for production, either
directly or through a review manual, label each document as responsive or not responsive to the RFP. No
label is predicted. By our definition above, this is not predictive coding.

Let D represent the input set of documents, P the production set, and P̄ the non-produced subset of
D. We can represent the abstract form of this basic process as follows, where the ellipsis signs represent
unknown or unspecified sources or targets of one or more maps, starting from the document collection D
and ending at the disjoint union P t P̄ .3

D // . . . // P t P̄

From this point of view, we can model human linear review as a two-step process. In the first step, the
documents D are mapped to the disjoint union DR t DNR—a partition of D into two disjoint sets whose
union is D. We label the first step h,rfp in honor of rfp-informed human review and the second step p for
‘production’:

D
h,rfp

// DR tDNR
p
// P t P̄

In the step labeled h,rfp, reviewers combine their knowledge of the request for production and their under-
standing of a document to assign one or more labels to it. Both knowledge of the request and document
understanding involve sophisticated capacities of human cognition. The step labeled p is much simpler: any
document in DR goes to P ; any document in DNR goes to P̄ . Since any document of D belongs to exactly
one of DR or DNR, composing the maps provides a path from D to the production set:

D
h,rfp◦p

// P t P̄

1.2 predictive coding

In predictive coding, by our definition, it is not the case that every label on every document is supplied by
human reviwers: the arrow labeled h,rfp above is to be replaced by automated steps in some way. But how?
We would like to be able to specify all the possibilities: this is the solution space to this problem.

There is a useful and relevant distinction in machine learning ([Mohri et al., 2012], for example) which
separates examples (individual data instances), features (the relevant set of properties by which examples
are characterized), and labels (additional values associated with examples). In the context of e-discovery,
it is easy to see what the examples are (individual members of the document set D) and easy to see what
the labels are (responsive, non-responsive, privileged, . . . ). It is less easy to see what corresponds to the

3A map or function from D to P , say, associates to each element in D a unique element in P . For present purposes, a
disjoint union is the union of two disjoint sets—sets with no elements in common.
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features, first, because the choice of features is not determined by the document set, second, because its not
determined by the the production requirements, and third, because not all forms of PC fit squarely within
the machine learning paradigm. We will start with the how the standard labels (responsive, non-responsive,
. . . ) are assigned to documents, but as our discussion continues, the structural importance of features will
become more and more apparent.

The most important structural property in document review is how labels (in the sense of the previous
paragraph) are associated with documents. In linear review in its pure form, documents are labeled by
human reviewers one by one, so that the only way a document can be labeled responsive or non-responsive is
through the action of a human reviewer. In predictive coding, this individual coding gives way in a variety
of ways. In the immediate paragraphs that follow in this section, we briefly describe what we take to be the
structural features of the landscape. In subsequent sections, we take up a number of the issues that arise
from this perspective, and examine in more detail the structural details of some of the key predictive coding
types we distinguish.

Focusing on how documents are labeled provides a first, principled distinction among current review
methods. One of the miracles of the marketing of predictive coding is that regardless of which side of this
distinction your favorite method sits on, you can still use predictive coding methods to make it better. Or
faster. Or cheaper.

1.2.1 accelerated review

One way to cut down the number of touches in document labeling, while still relying on human review as the
labeling mechanism, is to label sets of documents rather than each of the individual documents contained
in these sets. Suppose there is a way (actually, there are many ways) to cluster similar documents together,
so that if documents d1 and d2 are sufficiently similar in some respect, they may belong to the same cluster
k in the set of clusters DK . Intuitively, we want each document in D to belong to exactly one element of
DK . Thus, DK is a partition of D: every member of D belongs to exactly one element of DK and the union
of the elements of DK is D. The passage from D to DK is structure enhancing. In this case, the structural
enrichment consists of the implicit association of elements in M that belong to the same cluster. It is our
expectation—well, at least our hope—that elements belonging to the same cluster will have other properties
in common—properties like responsiveness.

D
k // DK

h,rfp
// DR tDNR

p
// P t P̄

There are many different approaches to clustering, involving, among other things, different measures of
distances and different goals in grouping. Without describing these in detail, we make a few basic points
below about the role of clustering in review:

• clustering by itself doesn’t entail that documents in the same cluster are label-equivalent: a perfectly
sound method of clustering is to assign documents that have the same number of occurrences of the in
their contents, but it is unlikely that this method will produce label-equivalent clusters;

• clustering should not be dominated by irrelevant material such as signature lines, footers, embedded
messages, and so on;
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• if bulk coding is based on statistical sampling, the protocol should be described and adhered to; if it
isn’t based on statistical sampling, what is it based on?

• the bulk coding protocol should characterize the criteria by which a cluster is associated with a label,
as well as the procedure to be followed when no label can be consistently applied to the members of a
cluster.

In the form of clustering that we have described, the key characteristic is that every cluster is labeled by
human review. But if a label assigned to a cluster propagates automatically to each member of the cluster,
regardless of whether that member has been individually reviewed, this is not linear review. There are other
paths to accelerated review—various forms of prioritized review or ranked retrieval. We address a number
of these shortly below in the section on hybrid review.

1.2.2 predictive classification

One especially important form of predictive coding offers an alternative to human labeling: the automated
or semi-automated construction of a document model M , in which the document set is mapped to a struc-
tured set of document subsets corresponding to the labels, for example MR, MNR, and possibly other sets
overlapping these representing potentially privileged documents, documents tagged for particular issues, and
so on. We call these forms of predictive coding predictive classification. Abstracting away from how the
labeled model is constructed, we have the structural diagram below:

D // . . . // MR tMNR
// . . .

On the right hand, downstream, side, there is still a critical role for human review—but this role consists
of validation of predicted labeling. And the number of touches or document interactions in validation is
smaller—often orders of magnitude smaller—than in human linear review, where each document is touched.
When validation is successful, we can extend the diagram above as shown below.4

D // . . .
µ
// MR tMNR

val // DR tDNR
// P t P̄

There is a structural property that distinguishes all forms of predictive classification from non-predictive
classification. In non-predictive classification—both linear review and non-hybrid forms of accelerated
review—the properties of the RFP come into play during the human coding process (as in the maps la-
beled above h,rfp). In predictive classification, properties of the RFP must enter before model validation,
thus prior to the completion of the model construction step represented above by the map µ. We will ex-
plore exactly how the properties of the RFP enter when we discuss machine learning and manual classificaion
below.

4We return below to the case when validation comes up short.
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1.2.3 hybrid review: partial or implicit classifiers

Suppose that a possibly high-precision NR subset of a document set D is identified, so that D can be
partitioned into the disjoint union DNR t (D \DNR).5 DNR is thus a model (possibly a partial model) of
the non-responsive subset of D. The hypothesis that it is an adequate model may be tested by sampling
and validated. If the validation test succeeds, then every document in DNR may be labeled NR, just as in
predictive classification. If the remainder D \DNR is linearly reviewed, then the result is a hybrid form of
review: part linear, part predictive. In a diagram:

D \DNR

h,rfp

%%

D // DNR t (D \DNR)

66

((

P t P̄

DNR

val

99

There are many variants of this hybrid architecture. One of them involves ranked retrieval, in which the
document set is ranked in decreasing order of projected responsiveness, and linear review starts at the top
and continues until it reaches a point where the density of responsive documents is so low that the remaining
documents may be regarded as a possibly high-precision NR subset and subjected to validation testing as a
whole by sampling, rather than linear review.

1.2.4 predictive classifiers: machine learning models and manually-built models

Predictive classifiers construct a model (often iteratively) of how the document set D is implicitly structured
by the RFP. Regardless of how the model is constructured, it’s quality can be quantitatively assessed and
validated by statistical methods. If the quantitative assessment surpasses our validation standards, the
results can be produced; if they don’t, we improve the model and assess the improved result, continuing
until we pass.6 We distinguish (structurally—via the role of the RFP information) two basic methods of
model construction.

In machine learning classification, human reviewers, relying on their knowledge and understanding of
the RFP, label a sample of documents, resulting in a partition of D consisting of DL and D \ DL). The
partition is intended to be asymmetrical: DL is much smaller than D \DL. A machine-learning algorithm
α then projects the sampling results represented by DL across the rest of the data—that is, D \DL—in a
way that creates a model in D responding to the requests in the RFP.

D
h,rfp

// DL t (D \DL)
α // MR tMNR

val // P t P̄

There are many machine-learning algorithms available to play the role of α, surveyed below.

5The operator ‘\’ is the relative complement operator: D \DNR consists of the elements of D not in DNR.
6Note that iterative model improvement does not entail iteration of the model construction process—another form of hy-

bridization that we return to below.
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In manual classification, a classifier to build the model-structure MR tMNR is constructed manually.
As an example, suppose the classifier consists of a set of ontology-based searches. Whether the ontologies
are selected from off-the-shelf libraries or designed by hand to deal with the particular properties of D, the
resulting ontology-based searches incorporate the relevant properties of the RFP—a fact we represent in the
map below by ‘Ω(rfp)’. Structurally, then, we have:

D
Ω(rfp)

// MR tMNR
val // P t P̄

Just as there are many machine-learning algorithms available to play the role of α, there are also many other
forms of search-based classification that can play the structual of Ω(rfp) above.

1.3 summary

The basic structural landscape contains familiar landmarks. Key point: these landmarks are distinguishable
by a small number of structural oppositions.

2 predictive coding: data structures, algorithms, process

The structural view of predictive coding offered above abstracts from a broad range of particulars: par-
ticular data structures and data representations, particular algorithms applying to these structures and
representations, and essential aspects of the predictive coding process involving iterative training, testing,
and validation. The reason for separating structural properties from these particulars is simple: any given
particular may be compatible with multiple, distinct structures; as a result, focusing on the particulars at the
outset obscures the underlying structural distinctions and the clarity they provide on the predictive coding
landscape as a whole. In what follows, we survey a variety of these particulars and consider their roles in
the structural configurations discussed above.7

2.1 data structures: formal models of document collections

Electronically stored information comes in many forms, including a variety of formats for representing text.
(See [Büttcher et al., 2010, pp. 9ff.] for an insightful overview.) Contemporary corporate document collec-
tions typically contain documents in multiple formats representing texts in multiple languages. In prepa-
ration for and during review, the documents in such collections must be processed in multiple ways. The
preparation side includes normalizing each document in the form of a sequence of characters (such as utf-8).
Subsequent steps involve basic decisions about stop words, stemming, and tokenization. These may seem
inconsequential, but they can have large downstream impacts, because distinct words can have the same
normal form. While these initial preparatory processing decisions set the stage for all that follows, they are
basically orthogonal to the distinctions between the points of prominence in the structural landscape above.
As a result, we won’t pursue them here, except to note first, that these decisions already represent a move
away from the documents themselves to a tailored representation of the documents, and second, that this

7Two cogent classifications of these particulars due to Herb Roitblat and Doug Oard have been pre-
sented and discussed by Ralph Losey in his e-discovery blog at http://e-discoveryteam.com/2013/03/03/

the-many-types-of-legal-search-software-in-the-car-market-today/.
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move directly involves forms of TAR/CAR, but have nothing directly to do with predictive coding. But
predictive coding systems also rest on assumptions about the representation of document collections as a
formal model or computational data structure which is compatible with the methods selected for predictive
clustering (as in accelerated review) or predictive classification and often has additional virtues involving the
time and space requirements of these methods.

2.1.1 term distribution: inverted indexes

Large volume search-based classification systems often depend for efficiency on an inverted index, comparable
to the index in the back of a book or a concordance. Structurally, an inverted index consists of a list of the
vocabulary of the collection as a whole, together with a postings list that pairs individual words with a list
of documents the word occurs in, possibly along with other information, such as the position or positions
the word occurs in (in order to support phrasal search and proximity queries). The various kinds of inverted
indexes and the functionality they support—Boolean search (with operators and, or, not), proximity searches,
various kinds of wild-card searches—are lucidly described in [Manning et al., 2008, Büttcher et al., 2010]. In
addition, inverted indexes can also support ontology-based classification, when it is implemented through
searches of these kinds. Inverted indexes also support weighted search and corresponding forms of ranked
retrieval. But they lack a direct model of documents: documents are only represented indirectly in the global
properties of the postings list.

2.1.2 vector models

Another familiar standard model, with many variations, represents each individual document as a vector in
a high-dimensional vector space V . One can label the dimensions of V with many different kinds of data. In
the simplest case, the dimensions correspond to the terms of the dictionary of the collection. The value for
a document d at the coordinate corresponding to term t might be 1 if t occurs in d or 0 if not; alternatively,
the value might be a weight based on the frequency of the term in the document; or it might be a weight
based on the term frequency and the inverse document frequency (tf-idf); or it might be a pair consisting
of the weight, and a list of the positions of t in d. These are all unigram models, because they are based
on properties of one terms at a time, and each document is associated with a specific vector. There is no
reason to stop at unigrams. In a bigram language model, the basic unit involves two word sequences. And
we label the dimensions of the vector space with weights associated with bigrams. Many other choices are
possible. Vector models of this kind often lose information: in the unigram vector model, for example, the
vector associated with the 3 word document ‘Me. Not you.’ is the same as the vector associated with the
3 word document ‘You. Not me.’ (assuming that punctuation is discarded and words are normalized to
lower-case). But one of the strong attractions of vector-based models with numerical weights is that they
support an intrinsic measure of the distance between documents.

2.1.3 matrix models

The matrix-based model of Latent Semantic Analysis (LSA) combines the document-centric and term-centric
points of view in a single formal model. The model is built in two stages—M1 and M2. Both stages consist
of a t× d matrix, where t is the number of terms in the collection and d is the number of documents in the
collection. To map the first stage M1 to the second stage M2, we factor M1 into a product of three terms, T0

(t×m, with orthonormal columns, so that TT0 T0 = 1), S0 (m×m diagonal, with decreasing entries, so that
S0(i, i) ≥ S0(i+1, i+1)), and D0 (m×d with orthonormal columns, so that DT

0 D0 = 1) using the technique
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in Linear Algebra known as Singular Value Decomposition (SVD) (a technique with connections to Principal
Component Analysis in statistics). Then there is a delicate step in which we (manually) choose the top k
elements on the diagonal of S0 and replace the rest with 0. Call this new diagonal matrix S. Multiplying the
factors T0SD0, we get a new matrix of the same dimensionality as the first, but with different entries—entries
which will better reflect (we hope) the hypothesized latent semantic structure, since we’ve focused on the k
principal components and eliminated (we hope) the noise attributable to the m−k missing diagonal entries.
Like the vector models above, matrix models support an instrinsic notion of distance between documents
and as a result are readily adaptable to clustering applications based on distance.

2.1.4 topic models

For a third class of models, take the probabilistic model of Probabilistic Latent Semantic Analysis (PLSA), an
approach which starts from the problems motivating LSA, but constructs a solution on completely different
lines—using a probabilistic generative topic model. PLSA is one of a growing family of such generative topic
models, which now includes Latent Dirichlet Allocation (LDA) and a large and growing set of extensions
to LDA. (http://www.cs.princeton.edu/~blei/topicmodeling.html).Their underlying assumptions are
elegantly displayed as graphical models, where the observable documents in the dataset are represented as
probabilistically generated from a variety of latent, nonobservable structures.8

2.1.5 summary

The models just described are models of document sets and are independent of any document request (RFP).
They can all be used in systems of accelerated review: the index system needs to be coupled with a form of
search-based classification (such as ontologies), while the vector, matrix, and topic models need to be coupled
with one of the variety of measures of similarity or distance that they intrinsically support. More ambitious
and effective systems combine these models of document sets with information related to the RFP.

2.2 from data structures to models

Ideally, responding to an RFP implicitly defines a model of the RFP within the document source collection:
each request or subrequest is associated with the set of documents that correctly respond to it. Concretely,
the models we define in the course of responding to an RFP are hypotheses. One of the fundamental
advantages of technology-assisted model construction—compared to the possibly haphazard course of linear
review—is that hypotheses can be easily tested by standard statistical sampling techniques and the results
can be used to inform the construction of better hypotheses. In the following paragraphs, we describe two
distinct methods for combining information about a document set with information from an RFP. While one
is more automated than the other, we will see that they have many similarities and that there are common
workflows which draw on both methods.

2.2.1 from data structures to models: algorithms

From the perspective of machine-learning, hypothesis construction in response to an RFP may be regarded
as an instance of supervised learning, consisting of:

8For background on graphical models, see [Koller and Friedman, 2009, Barber, 2012] or Daphne Koller’s Coursera offering at
https://www.coursera.org/course/pgm. Blei et al. [Blei et al., 2003] provide an insightful discussion of the differences among
unigram models, PLSA, and LDA from this point of view.
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examples: individual items from the document set;

features: properties of examples; note that the different document models discussed above make available
different properties, even though they may be based on the same document collection.

labels: indicators of how examples are classified with respect to the RFP model

In supervised learning, a relatively small subset of the data is labeled (in some way), the labeled data is
split into a training set and a test set, and correlations between labels and features in the training set are
generalized and projected across the universe of examples as a whole, and performance is measured against
the labeled test set. In the present setting, where the labels provide the information asssociated with the
RFP, this classification of the example space is a hypothesis with regard to the implicit model of the RFP
within the data set. This projection cannot be done on the basis of the labels alone nor on the basis of the
features alone: it must be based on their interaction. Consequently, the feature space must be rich enough to
support label discrimination: that is, we would like to minimize the situation in which contradictory labels
are associated with two different documents that are represented identically in the feature space.

Statistical learning theory offers many algorithms that can be used in the projection step. From our
structural perspective adopted here, we may think of them as modules serving a particular structural role
(though of course, different algorithms may make different assumptions about the properties of the data they
operate on). For a quick introduction, with computational examples in the statistical programming languages
S and R, see [Venables and Ripley, 2002]. More extensive treatments may be found in [Hastie et al., 2009,
Mohri et al., 2012, Murphy, 2012]. Examples: linear regression, logistic regression, support vector machines
(SVM’s), principal component analysis (PCA), clustering (many subtypes), Bayesian classifiers, classification
and regression trees (CART’s), . . . .

Since there are many different kinds of data and different algorithms perform differently as the underlying
data changes, it is not to be expected that a single one of these algorithms will provide optimal performance
across the range of electronic discovery datasets. But every method of statistical classification generates
a testable hypothesis regarding the implicit document model associated with any given RFP. The cost of
obtaining such hypotheses is remarkably low and scales amazingly well (especially compared to linear review
and forms of accelerated review at the inefficient end). At the same time, the quality of such hypotheses can
be remarkably high. This is the promise and potential of algorithmic predictive classification.

2.2.2 from data structures to models: manual classifiers

In the machine learning paradigm, the hypothesized model is constructed by statistical algorithms that
project correlations between labels applied by reviewers sensitive both to the legal requirements of the RFP
and to the properties of documents in a review sample. An alternative is to construct a hypothetical model
using conceptually-based search techniques (such as ontology-based search). It might be hoped that a large
and comprehensive library of ontologies would be sufficient to craft an adequate model for any document
set and RFP. In our experience, some ontologies (emotional expression) are broadly applicable; some are
applicable to particular sectors (think of sector-specific newsletters and trade associations, which are likely,
but not necessarily, to be non-responsive to RFP requests); some are applicable to particular organizations
(brand names and product codes); and others depend on idiosyncrasies that depend on the RFP and the
document set. This means that in most projects, hypothesis construction based on ontologies is likely to be
resource-intensive and difficult to scale.

One way to improve this process is to embed ontology-based hypothesis construction in a statistical
sampling framework derived directly from the machine learning paradigm discussed above. This is an
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iterative process (see below) and on any iteration, an appropriate statistical sample is selected (perhaps
random, perhaps stratified—see below), the sample is labeled and the current hypothesis is adjusted to fit,
then tested against held back test data.

2.3 sampling: training, testing, validation

Predictive classification relies on iterative sampling. In any iterative round, sampled data is labeled with
the relevant RFP information and divided into a training set. The classification system projects the training
set labeling across the document collection as a whole. If the performance on a held back test set or on
cross-validation is good enough, a statistical validation round takes place. If the validation round takes place
unsuccessfully or the performance on the test set is not good enough, a new iterative sampling round takes
place (on the assumption that improved results that flow from further iteration will justify the time and
effort involved). Of the many basic questions that arise in this setting, we take up just, well, a sample.

Ralph Losey, in a series of important and influential blog postings (http://e-discoveryteam.com) has
focused attention on three kinds of training data—random sampling, stratified sampling based on active
learning, and judgmental sampling directly informed by subjective human knowledge—and argued that a
‘multimodal’ approach using all three (the ‘three-cylinder multimodal approach’) is optimal, preferred, sine
qua non. Who could disagree? Our own view is that it’s worthwhile to assess, at each stage of predictive
classification, what kind of sampling most effectively advances overall goals. At the outset, a random sample
provides basic information about the global distribution of the various document categories of interest—
information that is distorted or blurred if the global random sample is mixed with non-global samples. In
subsequent rounds, if the non-responsive / responsive ratio is high, then continuing to draw global random
samples means that one’s resources are allocated to labeling non-responsive documents. On this scenario,
then, it makes sense to switch to stratified sampling, focusing on sub-populations whose labeling will be
most useful. On Losey’s metaphor, our predictive coding engine runs most powerfully when we switch
from one cylinder to another. When should the third cylinder fire most effectively? One reason to ask
this question is that the third cylinder—the judgmental sampling cylinder—is fueled directly by expensive
subject matter experts, high-priced adepts in fact and law. Judgmental sampling at the outset involves
a period of exploratory search and investigation, followed by the incorporation of the labeled results in
the training data. This is essentially the same methodology that the subjects of the famous 1985 Blair
& Maron study [Blair and Maron, 1985] followed, with notoriously poor recall results. It is a strength
of random sampling that any significant population of responsive documents will eventually overlap with
randomly drawn samples. This suggests that a more efficient and effective use of expensive human review
resources might take place closer to the end of the modeling process, where it can take advantage of all the
previous coding work, especially clashes between model predictions and expert labeling decisions, to push
model performance above the limits of current machine learning paradigms. The possibility of using human
resources as a final boost to iterative machine learning rounds offers a useful perspective on how to deal
with the situation in which we’re faced with more iterations than progress or when an attempted validation
round fails: tune the machine learning classifier with manual classification based on human insights.

3 predictive coding structures and predictive coding workflows

The basic landscape of review abstracts from many specific workflows. Many modular technologies can play
roles in workflows that count as distinct from the structural perspective adopted here. For example, one
can use machine-learning technology in accelerated review and in hybrid accelerated review, as well as in
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machine-learning classification. Shifting the focus from the technology modules to the simple structural
properties stressed above clarifies the properties and potential of all the varieties of predictive coding.
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