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Abstract—Interpretation of images and videos containing humans interacting with different objects is a daunting task. It involves

understanding scene/event, analyzing human movements, recognizing manipulable objects, and observing the effect of the human

movement on those objects. While each of these perceptual tasks can be conducted independently, recognition rate improves when

interactions between them are considered. Motivated by psychological studies of human perception, we present a Bayesian approach

which integrates various perceptual tasks involved in understanding human-object interactions. Previous approaches to object and

action recognition rely on static shape/appearance feature matching and motion analysis, respectively. Our approach goes beyond

these traditional approaches and applies spatial and functional constraints on each of the perceptual elements for coherent semantic

interpretation. Such constraints allow us to recognize objects and actions when the appearances are not discriminative enough. We

also demonstrate the use of such constraints in recognition of actions from static images without using any motion information.

Index Terms—Action recognition, object recognition, functional recognition.

Ç

1 INTRODUCTION

UNDERSTANDING human-object interactions require inte-
grating various perceptual elements. We present a

Bayesian approach for the interpretation of human-object
interactions, that integrates information from perceptual
tasks such as scene analysis, human motion/pose estima-
tion,1 manipulable object detection, and “object reaction”
determination.2 While each of these tasks can be conducted
independently, recognition rates improve when we inte-
grate information from different perceptual analysis and
also consider spatial and functional constraints.

Integrating information from different perceptual ana-

lyses enables us to form a coherent semantic interpretation

of human-object interactions. Such an interpretation not

only supports recognizing the interactions, but also the
objects involved in those interactions and the effect of those
interactions on those objects.

Interactions between different perceptual analyses allow
us to recognize actions and objects when appearances are not
discriminative enough. Consider two objects, such as the
spray bottle and a drinking bottle shown in Fig. 1. These
objects are similar in appearance and shape, but have
different functionality. Due to their functional dissimilarity,
people’s interaction with these objects provides context for
their recognition. Similarly, two similar human movements/
poses can serve different purposes depending on the context
in which they occur. For example, the poses of the humans
shown in Fig. 2 are similar, but, due to the difference in
context, the first action is inferred to be running and the
second action to be kicking.

Another important element in the interpretation of
human-object interactions is the effect of manipulation on
objects. When interaction movements are too subtle to
observe using computer vision, the effects of these move-
ments can provide information on functional properties of
the object. For example, when lighting a flashlight, recogniz-
ing the pressing of a button might be very difficult.
However, the resulting illumination change can be used to
infer the manipulation.

We present two computational models for the interpreta-
tion of human-object interactions in videos and static images,
respectively. Our approach combines action recognition and
object recognition in an integrated framework, and allows us
to apply spatial and functional constraints for recognition.
The significance of our paper is threefold: 1) Human actions
and object reactions are used to locate and recognize objects
which might be difficult to locate or recognize otherwise.
2) Object context and object reactions are used to recognize
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1. Recognition of action in static images is based on “implied” motion.
“Implied” motion refers to the dynamic information implicit in the static
image [26]. The inference of action from static images depends on implied
motion, which itself depends on the phase of the action [27], [53]. This
indicates that human pose provides important cues for action recognition in
static images.

2. Object reaction is the effect of manipulation of an object by human
actor.
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actions which might otherwise be too similar to distinguish
or too difficult to observe. In some cases, such as in
recognition of actions from static images, there is no dynamic
information; however, contextual information can be used in
such cases for recognition. 3) We provide an approach for
recognition of actions from “static” images. The extraction of
“dynamic information” from static images has been well
studied in the fields of psychology and neuroscience, but has
not been investigated by the computer vision community.

2 RELATED WORK

2.1 Psychological Studies

Our work is motivated by psychological studies of human
information processing. With the discovery of mirror
neurons in monkeys, there has been a renewed interest in
studying the relationships between object recognition,
action understanding, and action execution [38], [15], [16].
With the same neurons involved in execution and percep-
tion, a link between object recognition and action under-
standing has been established [38] in humans. Gallese et al.
[15] showed that movement analysis in humans depends on
the presence of objects. The cortical responses for goal
directed actions are different from the responses evoked
when the same action is executed but without the presence
of the object. In another study, Frey et al. [25] showed that
human inferior frontal cortex responds to static pictures of
human-object interactions. The response was only observed
in the presence of congruent poses and objects, suggesting
that human poses are evaluated in the context of objects. On
the other hand, the importance of action in perceiving and
recognizing objects (especially manipulable objects like
tools) has been shown [8].

Recent studies in experimental psychology have also
confirmed the role of object recognition in action under-
standing and vice versa. Helbig et al. [23] show the role of
action priming in object recognition and how recognition
rates improve with action priming. Recognition rates of
target objects were higher when the priming object was used
in a similar action as the target object. In another study, Bub
and Masson [7] investigated the role of object priming in
static gesture recognition. While passive viewing of an object

did not lead to priming effects, priming was observed when
humans were first asked to recognize the object and then
recognize the image of a related hand gesture. In a recent
study, Bach et al. [2] showed that when actions involving
objects are perceived, spatial and functional relations
provide context in which these actions are judged. These
studies suggest that humans perceive implied motion from
static poses under object and scene context.

While most of this work suggests interactions between
object and action perception in humans, they have not
examined the nature of the interaction between action and
object recognition. Vaina and Jaulent [54] address this
through the study of pantomimes. They ranked the properties
of objects that can be estimated robustly by perception of
pantomimes of human-object interaction. They discovered
that the weight of an object is most robustly estimated,
while size and shape are harder to estimate.

2.2 Computational Approaches

There has been a very large body of work carried out in
both, object recognition and action recognition. Most
approaches, however, address one or both of these
problems, independent of the other.

Computational approaches for object recognition typi-
cally use local static features, based on shape and textural
appearance [9], [34], [21]. Berg and Malik [3] proposed the
‘geometric blur’ feature that is robust under affine distor-
tions. Bosch et al. [6] proposed the Pyramidal Histogram of
Oriented Gradients (PHOG) feature and the Pyramidal
Histogram of Visual Words (PHOW) feature to represent
local image shape and its spatial layout. Wu and Nevatia [58]
proposed a set of silhouette-oriented features, called edgelet
features, which were learned in a boosting framework to
detect humans. Such approaches work well for detecting
articulated/rigid objects, but encounter difficulties in re-
cognizing manipulable objects due to the lack of discrimi-
native power in these features. Todorovic and Ahuja [51]
model object categories as characteristic configurations of
parts that are themselves simpler subcategories, allowing
them to cope better with nonrigid objects. However, like all
appearance-based approaches, they still cannot deal with the
many real-world objects that are similar in appearance but
dissimilar in functionality. Functional properties of objects
have also been used for object recognition. Functional
capabilities of objects are derived from shape [45], [48],
physics, and motion [11]. These approaches are limited by
the lack of generic models that can map static shape to
function. There has been recent interest in using contextual
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Fig. 1. Importance of interaction context in recognition of object and vice
versa. While the objects might be difficult to recognize using shape
features alone, when interaction context is applied the object is easy to
recognize. Similarly, two actions might have similar dynamics and
trajectories. It is difficult to differentiate between two actions based on
the shape of trajectories. However, when cues from object are used in
conjunction with cues from human dynamics, it is easy to differentiate
between two actions.

Fig. 2. Action recognition from static images requires contextual

information. The same poses can have different meanings based on

the context. (a) Running and (b) kicking.



information for object recognition. The performance of local
recognition-based approaches can be improved by modeling
object-object [35], [19] and object-scene relationships [49],
[36]. Torralba and Sinha used low-level image cues [52] for
providing context based on depth and viewpoint cues.
Hoiem et al. [24] presented a unified approach for
simultaneous estimation of object locations and scene
geometry. Rabinovich et al. [43] proposed incorporating
semantic object context as a postprocessing step to any object
category recognition system using a conditional random
field (CRF) framework.

There are a wide range of approaches to human action
recognition [46], [32], [22]. Analyzing human dynamics
from image sequences of actions is a common theme to
many of these approaches [5], [61], [44], [50]. While human
dynamics provides important clues for action recognition,
they are not sufficient for recognition of activities which
involve action on objects. Many human actions involve
similar movements/dynamics, but, due to their context
sensitive nature, have different meanings. Vaina and
Jaulent [54] suggested that action comprehension requires
understanding the goal of an action. The properties
necessary for achieving the goal were called Action
Requirements and are related to the compatibility of an
object with human movements such as grasps.

Compared to the large body of work carried out in human
action recognition from video sequences, there has been little
work on recognition from single images. Wang et al. [56]
presented an approach for discovery of action classes from
static images using the shape of humans described by shape
context histograms. Li et al. [29] tackled a different, but
related, problem of event recognition from static images.
They presented an approach to combine scene categorization
and object recognition for performing event classification
such as badminton and tennis. The problem of action
recognition from static images is one level lower in the
action hierarchy and corresponds to “verb” recognition in the
hierarchy suggested by Nagel [37].

Attempts have been made before, to model the contextual
relationship between object and action recognition. Wilson
and Bobick [57] introduced parametric Hidden Markov
Model (PHMM) for human action recognition. They indir-
ectly model the effect of object properties on human actions.
Davis et al. [10] presented an approach to estimate the weight
of a bag carried by a person using cues from the dynamics of a
walking person. Gupta et al. [17] presented an approach to
estimate human pose using the contextual features from the
objects being used in an activity. Moore et al. [33] conducted
action recognition based on scene context derived from other
objects in the scene. The scene context is also used to facilitate
object recognition of new objects introduced in the scene.
Kuniyoshi and Shimozaki [28] describe a neural network for
the recognition of “true” actions. The requirements for a
“true” action included spatial and temporal relationships
between object and movement patterns. Peursum et al. [41]
studied the problem of object recognition based on interac-
tions. Regions in an image were classified as belonging to a
particular object based on the relative position of the region to
the human skeleton and the class of action being performed.
All of the above work, models only one of the possible

interactions between two perceptual elements. Either they
try to model the dependence of object recognition on human
actions or vice versa. This assumes that one of the problems
can be solved independent of the other, and the information
from one can be used to aid in recognition of the other.

Our previous preliminary work [18] modeled the two-
way interactions between human actions and object percep-
tion. We presented a Bayesian model for simultaneous
recognition of human actions and manipulable objects.
Following our work, several recent papers have modeled
the action-object cycle. Wu et al. [60] recognized activities
based on detecting and analyzing the sequence of objects
manipulated by the user, using a dynamic Bayesian network
model. They combined information from RFID and video
data to jointly infer the most likely activity and objects in the
scene. Filipovych et al. [14] proposed a probabilistic
graphical model of primitive actor-object interactions that
combines information about the interactions’ dynamics, and
actor-object static appearances and spatial configurations.
However, none of these approaches can be easily extended to
action recognition from static images.

3 VIDEO INTERPRETATION FRAMEWORK

We first describe a computational model for interpretation of
human-object interaction videos. We identify three classes of
human movements involved in interactions with manipul-
able objects. These movements are 1) reaching for an object of
interest, 2) grasping the object, and 3) manipulating the
object. These movements are ordered in time. The reach
movement is followed by grasping which precedes manip-
ulation. In our model, we ignore the grasping motion since
the hand movements are too subtle to be perceived at the
resolution of typical video cameras when the whole body
and context are imaged.

3.1 Overview

We present a graphical model for modeling human-object
interactions. The nodes in the model correspond to the
perceptual analyses corresponding to the recognition of
objects, reach motions, manipulation motions, and object
reactions. The edges in the graphical model represent the
interactions/dependencies between different nodes.

Reach movements enable object localization since there is
a high probability of an object being present at the endpoint
of a reach motion. Similarly, object recognition disables
false positives in reach motion detection, since there should
be an object present at the endpoint of a reach motion (see
Fig. 3). Reach motions also help to identify the possible
segments of video corresponding to manipulation of the
object, since manipulation motion is preceded by reach
motion. Manipulation movements provide contextual in-
formation about the type of object being acted on and object
class provides contextual information on possible interac-
tions with them, depending on affordances and function.
Therefore, a joint estimation of the two perceptual elements
provides better estimates as compared to the case when the
two are estimated independently (see Fig. 4).

The object reaction to a human action, such as pouring
liquid from a carafe into a cup or pressing a button that
activates a device, provides contextual information about
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the object class and the manipulation motion. Our approach
combines all these types of evidences into a single video
interpretation framework. In the next section, we present a
probabilistic model for describing the relationship between
different elements in human-object interactions.

3.2 Our Bayesian Model

Our goal is to simultaneously estimate object type, location,
movement segments corresponding to reach movements,
manipulation movements, type of manipulation movement
and their effects on objects by taking advantage of the
contextual information provided by each element to the
others. We do this using the graphical model shown in Fig. 5.

In the graphical model, objects are denoted by O, reach
motions by Mr, manipulation motions by Mm, and object
reactions by Or. The video evidence is represented by
e ¼ feO; er; em; eorg, where eO represents object evidence, er
and em represent reach and manipulation motion evidence,
and eor represents object reaction evidence. Using Bayes
rule and conditional independence relations, the joint
probability distribution can be decomposed as3

P ðO;Mr;Mm;OrjeÞ / P ðOjeOÞP ðMrjOÞP ðMrjerÞ . . .

. . .P ðMmjMr;OÞP ðMmjemÞP ðOrjO;MmÞP ðOrjeorÞ:

We use loopy belief propagation algorithm [40] for
inference over the graphical model. In the next few sections
we discuss how to compute each of these terms. Section 3.3

discusses how to compute the object likelihoods P ðOjeOÞ. In

Section 3.4.1 we explain the computation of reach motion

likelihood, P ðMrjerÞ, and the contextual term P ðMrjOÞ. This

is followed by a discussion on computation of manipulation

motion likelihood, P ðMmjemÞ, and the term P ðMmjMr;OÞ in

Section 3.4.2. In Section 3.5, we discuss the object reaction

likelihood P ðOrjeorÞ and the prior term, P ðOrjO;MmÞ.

3.3 Object Perception

The object node in the graphical model represents the

random variable O. We want to estimate the likelihood of

the type of object and the location of the object. While our

approach is independent of the likelihood model, we

employ a variant of the histogram of oriented gradient

(HOG) approach from [9], [62].4 Our implementation uses a

cascade of adaboost classifiers in which the weak classifiers

are Fischer Linear Discriminants. This is a window-based

detector; windows are rejected at each cascade level and a
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Fig. 5. Underlying Graphical Model for Human-Object Interaction. The

observed and hidden nodes are shown in gray and white, respectively.

3. All of the variables are assumed to be uniformly distributed and,
hence, P ðOÞ, P ðMrÞ, P ðMmÞ, P ðOrÞ, P ðeOÞ, P ðerÞ, P ðemÞ, and P ðeorÞ are
constant.

4. We use linear gradient voting with nine orientation bins in 0-180;
12� 12 pixel blocks of four 6� 6 pixel cells.

Fig. 4. Importance of contextual information from interaction motion in
object class resolution. In this experiment, object detectors for cups and
spray were used. (a) The likelihood value of a pixel being the center of
cup and spray bottle is shown by intensity of red and green, respectively
(likelihood P ðOjeOÞ). (b) Hand trajectory for interaction motion (includes
reach and manipulation). (c) The segmentation obtained. The green
track shows the reach while the red track shows the manipulation.
(d) Likelihood values after belief propagation (belief: BelðOÞ). By using
context from interaction with the object, it was inferred that, since the
object was subjected to a wave like motion, it is more likely a spray
bottle.

Fig. 3. Importance of contextual information involved in reach motions
and object perception. (a) Object Detectors tend to miss some objects
completely (original detector). (b) Lowering the detection threshold can
lead to false positives in detection. The likelihood of a pixel being the
center of the cup is shown by intensity of red (likelihood P ðOjeOÞ).
(c) Reach Motion Segmentation also suffers from false positives (reach
P ðMrjerÞ). The trajectories are shown in green and blue with possible
endpoints of reach motion shown in red. (d) Joint probability distribution
reduces the false positives in reach motion and false negatives in object
detection (P ðO;MrjeO; erÞ).



window which passes all levels is classified as a possible
object location.

Based on the sum of votes from the weak classifiers, for
each cascade level, i, we compute the probability PiðwÞ of a
window, w, containing the object. If a window were
evaluated at all cascade levels, the probability of it contain-
ing an object would be

QL
i¼1 PiðwÞ. However, for computa-

tional efficiency many windows are rejected at each stage of
the cascade.5 The probability of such a window containing
an object is computed based on the assumption that such
windows would just exceed the detection threshold of the
remaining stages of the cascade. Therefore, we also
compute a threshold probability (Pti) for each cascade
level i. This is the probability of that window containing an
object whose adaboost score was at the rejection threshold.
If a detector consists of L levels, but only the first lw levels
classify a window w as containing an object, then the overall
likelihood is approximated by

P ðO ¼ fobj; wgjeOÞ �
Ylw

i¼1

PiðwÞ
YL

j¼lwþ1

ðPtjÞ: ð1Þ

3.4 Motion Analysis

We need to estimate the likelihoods of reach motion and
manipulation motion. Our likelihood model is based on
hand trajectories and, therefore, requires estimation of
endpoints (hands in case of upper body pose estimation)
in each frame. While one can use independent models for
tracking the two hands, this could lead to identity exchange
and lost tracks during occlusions. Instead, we pose the
problem as upper body pose estimation. We implemented a
variant of [12] for estimating the 2D pose of the upper body.
In our implementation, we use an edge [20] and silhouette-
based likelihood representation for body parts. We also use
detection results of hands based on shape and appearance
features and a temporal tracking framework where smooth-
ness constraints are employed to provide priors. Fig. 6
shows the results of the algorithm on few poses.

3.4.1 Reach Motion

The reach motion is described by three parameters: the start
time (trs), the end time (tre), and the 2D image location being
reached for (lr). We want to estimate the likelihood of reach
motion (Mr ¼ ðtrs; tre; lrÞ) given the hand trajectories. An
approach for detecting reach motion was presented in [42].
It is based on psychological studies which indicate that the

hand movements corresponding to ballistic motion such as
reach/strike have distinct “bell” shaped velocity profiles
[31], [47] (see Fig. 7). There is an initial impulse accelerating
the hand/foot toward the target, followed by a decelerating
impulse to stop the movement. There is no mid-course
correction. Using features such as time to accelerate, peak
velocity, and magnitude of acceleration and deceleration,
the likelihoods of reach movements can be computed from
hand trajectories.

However, there are many false positives because of errors
in measuring hand trajectories. These false positives are
removed using contextual information from object location.
In the case of point mass objects, the distance between object
location and the location being reached for, should be zero.
For a rigid body, the distance from the center of the object
depends on the grasp location. We represent P ðMrjOÞ using
a normal function, Nðjlrloj; �; �Þ, where � and � are the
average distance and variance of the distances in a training
database between grasp locations and object centers.

3.4.2 Manipulation Motion

Manipulation motions also involve three parameters: start
time (tms ), end time (tme ), and the type of manipulation
motion/action (Tm) (such as answering a phone, drinking,
etc.). We need to compute P ðMmjemÞ, the likelihood of a
manipulation given the evidence from hand trajectories.
While one can use any gesture recognition approaches
based on hand trajectories to estimate the likelihood, we use
a simple discrete HMM-based approach to estimate it.

We need to first compute a discrete representation of the
manipulation motion. Toward this end, we obtain a
temporal segmentation of the trajectory based on a limb
propulsion model. An approach for such a segmentation was
presented in [42]. There are two models for limb propulsion
in human movements: ballistic and mass-spring models [47].
Ballistic movements, discussed previously, involve impul-
sive propulsion of the limbs (acceleration toward the target
followed by deceleration to stop the movement). In the mass-
spring model, the limb is modeled as a mass connected to a
spring. Therefore, the force is applied over a period of time.

To obtain the temporal segmentation of a velocity profile,
it is observed that the endpoints of each ballistic segment
correspond to a local minima in the velocity profile.
However, due to noise all local minimas are not the
endpoints of atomic segments. Therefore, the segmentation
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Fig. 6. Results of upper body pose estimation algorithm. Fig. 7. Plot on the left shows velocity profiles of some mass-spring
motions and the figure on the right shows some ballistic hand
movements. The velocity remains low and constant during mass-spring
movements. It reduces to zero only at the end of the movement. On the
other hand, hand movements corresponding to ballistic motion such as
reach/strike have distinct “bell” shapes.

5. Our experiments indicate that in many cases locations rejected by a
classifier in the cascade are true object locations and selected by our
framework.



problem is treated as that of classifying the points of local
minima as being segmentation boundaries or not. The
classification is based on features such as accelerating
impulse and its duration. Given confidence values for each
time instant to be a starting, ending, or negligible movement,
we compute the most likely segmentation of the velocity
profile using Maximum Likelihood (see Fig. 8).

Each segment is then replaced by a discrete alphabet
defined as the cross product of type of propulsion (ballistic/
mass-spring) and the hand locations at the end of the motion
segments, represented with respect to the face. By using
alphabets for atomic segments, we transform a continuous
observation into a discrete symbol sequence. This is used as
input to obtain the likelihoods of different types of
manipulation motion from their corresponding HMMs.

In addition to computing the likelihood, we need to
compute the term P ðMmjMr;OÞ. Manipulation motion is
defined as a three-tuple, Mm ¼ ðtms ; tme ; TmÞ. The starting and
ending times, tms and tme , depend on Mr but are independent
of O. Similarly, the type of manipulation motion, Tm,
depends on O but is independent of Mr.

6 Hence, we
decompose the prior term as

P ðMmjMr;OÞ ¼ P
�
tms ; t

m
e

��Mr

�
P ðTmjOÞ: ð2Þ

Assuming that grasping takes negligible time, the time
difference between the ending time of a reach motion and
the starting time of a manipulation motion should be
zero. We model P ðtms ; tme jMrÞ as a normal distribution
Nðtms � tre; 0; �tÞ, where �t is the observed variance in the
training data set. P ðTm ¼ mtypejO ¼ objÞ is computed
based on the number of occurrences of manipulation
mtype on object obj in our training data set.

3.5 Object Reactions

Object reaction is defined as the effect of manipulation on
the object. In many cases, manipulation movements might
be too subtle to observe using computer vision approaches.
For example, in the case of a flashlight, the manipulation
involved is pressing a button. While the manipulation

motion is hard to detect, the effect of such manipulation (the
lighting of the flashlight) is easy to detect. Similarly, the
observation of object reaction can provide context on object
properties. For example, the observation of the effect of
pouring can help making the decision of whether a cup was
empty or not.

The parameters involved in object reaction are the time
of reaction (treact) and the type of reaction (Tor). However,
measuring object reaction type is difficult. Mann et al. [30]
presented an approach for understanding observations of
interacting objects using Newtonian mechanics. This ap-
proach can only be used to explain rigid body motions.
Apart from rigid body interactions, the interactions which
lead to changes in appearances using other forces such as
electrical are also of interest to us.

We use the differences of appearance histograms (eight
bins each in RGB space) around the hand location as a
simple representation for reaction type classification. Such a
representation is useful in recognizing reactions in which
the appearance of the object at the time of reaction, treact,
would be different than appearance at the start or the end of
the interaction. Therefore, the two appearance histograms
are subtracted and compared with the difference histo-
grams in the training database to infer the likelihood of the
type of reaction (Tor).

In addition, we need to compute the priors P ðOrjMm;OÞ.
Object reaction is defined by a two-tuple, Or ¼ ðTor; treactÞ.
Using the independence of the two variables:

P ðOrjMm;OÞ ¼ P ðTorjMm;OÞP ðtreactjMm;OÞ: ð3Þ

The first term can be computed by counting the

occurrences of Tor when the manipulation motion is of type

mtype and the object is of type obj. For modeling the second

term, we observed that the reaction-time ratio, rr ¼ treact�tms
ðtme �tms Þ

, is

generally constant for a combination of object and manip-

ulation. Hence, we model the prior by a normal function

Nðrr; �r; �rÞ over the reaction-time ratio, where �r and �r are

the mean and variance of reaction-time ratios in the training

data set.
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Fig. 8. Segmentation Procedure: The first graph shows the local minima

of velocity profile. These local minima are classified into possible

endpoints of each segment. This is followed by a maximum likelihood

approach to obtain the segmentation of the velocity profile. Fig. 9. Using appearance histograms around hand to estimate P ðOrjeorÞ.
In the case above, illumination change due to flashlight causes the

change in intensity histogram.

6. Type of manipulation also depends upon the direction of reach
motion. This factor is, however, ignored in this paper.

morariu
Inserted Text
(see Fig. 9)




4 RECOGNIZING INTERACTIONS FROM STATIC

IMAGES

While action recognition requires motion information, in
the case of static images, contextual information can be used
in conjunction with human pose to infer action. Figs. 10a
and 10b show examples of reasoning involved in inference
of actions from a static image. In both cases, pose alone does
not provide sufficient information for identifying the action.
However, when considered in the context of the scene and
the objects being manipulated, the pose become informative
of the goals and the action.

Relevant objects in the scene generally bear both a
semantic7 and spatial relationship with humans and their
poses. For example, in a defensive stance of a cricket
batsman, the bat is facing down and is generally below or in
level with the person’s centroid. Similarly, the location of
the cricket ball is also constrained by the person’s location
and pose (see Fig. 11). We describe how to apply spatial
constraints on locations of objects in the action recognition
framework. By combining action recognition from poses
with object detection and scene analysis, we also improve
the performance of standard object detection algorithms.

We first present an overview of the approach in
Section 4.1. Section 4.2 describes our Bayesian model for
recognition of actions and objects in static images. This is
followed by a description of individual likelihood models
and interactions between different perceptual elements in
subsequent sections.

4.1 Overview

Studies on human-object perception suggest that people
divide objects into two broad categories: scene and manip-
ulable objects. These objects differ in the way inferences are
made about them. Chao and Martin [8] showed that when
humans see manipulable objects, there is cortical activity in
the region that corresponds to action execution. Such
responses are absent when scene objects, such as grass and
house, are observed. Motivated by such studies, we treat the

two classes differently in terms of the role they play in
inferring human location and pose and represent them by
two different types of nodes in the Bayesian model.

Our Bayesian model consists of four types of nodes,
corresponding to scene/event, scene objects, manipulable
objects, and human. The scene node corresponds to the
place where the action is being performed, such as a cricket
ground or a tennis court. The scene object nodes correspond
to objects which do not have causal dependency on the
human actor and are mostly fixed in the scene, such as the
net in the tennis court. Manipulable objects correspond to
the instruments of the game such as a ball or a racket.

The interactions between these nodes are based on
semantic and spatial constraints. The type of objects that
occur in an image depends on the scene in which the action
takes place. For example, it is more likely for a pitch to occur
in a cricket ground than a tennis court. Therefore, there exist
semantic relationships between scene and scene objects.

The type of action corresponding to a pose depends on
the type of scene and the scene objects present. The type of
action also depends on the location of the human with
respect to the scene objects. For example, a pose with one
hand up in a tennis court can either be a serve or a smash.
However, if the human is located at the baseline it will more
likely be a serve; otherwise, if he is near the net it will more
likely be a smash. While considering that such spatial
relationships are important, in this paper, we consider only
the semantic relationships between actions and the scene
and scene objects. Since we are not modeling spatial
relationships between scene objects and human actions,
we only consider the presence/absence of scene objects.
Therefore, each scene object node (representing a class such
as cricket-stumps) is characterized by a binary variable
indicating the presence/absence of that scene object class.

GUPTA ET AL.: OBSERVING HUMAN-OBJECT INTERACTIONS: USING SPATIAL AND FUNCTIONAL COMPATIBILITY FOR RECOGNITION 7

7. By semantic relationships we refer to those relationships that are
captured by co-occurrence statistics.

Fig. 10. Examples depicting the reasoning process in action inference
from static images. The labels in red are the result of a scene
categorization process, cyan labels and blue labels represent scene and
manipulable objects, respectively, and the magenta label is the result of
a pose estimation algorithm. For understanding actions from static
images, information is combined from all components. While the pose is
similar in both scenes, the presence of the racket and tennis ball, along
with the tennis court environment suggests that the first picture is a
“tennis-forehand” while the second is baseball pitching due to the
presence of the pitching area and the baseball field. (a) Tennis-
forehand. (b) Baseball pitching.

Fig. 11. Detection of manipulable objects can be improved using spatial
constraints from human action. The ball detector detects two possible
cricket balls. In the case of defensive batting, the probability of possible
locations of the ball is shown by the shaded regions. Hence, the region
below the centroid, where the ball is more likely to be present, is
brighter. The ball denoted in box 4 lies in a darker region, indicating it is
less likely to be a cricket ball due to its location with respect to the
human. For objects such as bats, another important spatial constraint is
connectedness. A segment of the bat should be connected to a segment
of the human; therefore, false positives, such as object 1, can be
rejected. (a) Without spatial constraints. (b) With spatial constraints.



For manipulable objects, there exist both spatial and
semantic constraints between people and the objects. The
type of manipulable objects in the image depends on the type
of action being performed. Also, the location of the manipul-
able objects is constrained by the location of the human, the
type of action and the types of manipulable objects. For
example, the location of a tennis ball is constrained by the
type of action (in the case of a forehand the ball is located to
the side of a person while in the case of a serve it appears
above). Spatial constraints also depend on the type of object;
objects such as a tennis racket should be connected to the
person while objects such as a ball generally have no such
connectivity relationships. We describe an approach to
represent such relationships in our Bayesian network.

4.2 Our Bayesian Model

The graphical model used for the scene interpretation
framework is shown in Fig. 12. We simultaneously estimate
the scene type, scene objects, human action, and manipulable
object probabilities. Let S represent the scene variable,
SO1 . . .SON represent the N type of scene objects, H
represent the human, and MO1::MOM represent the M
possible manipulable objects. If e ¼ feS; eSO1

::eSON
; eH;

eMO1
::eMON

g represents the evidential variables or the
observations, our goal is to estimate P ðS;H; SO1::SON;
MO1::MOM jeÞ. This can be decomposed as

Y

j

P ðMOjjHÞP ðMOjjeMOj
ÞP ðHjS; SO1::SONÞP ðHjeHÞ . . .

. . .
Y

i

P ðSOijSÞP ðSOijeSOi
ÞP ðSjeSÞ:

ð4Þ

We use the loopy belief propagation algorithm [40] for
inference over the graphical model.

4.3 Scene Perception

A scene is mainly characterized as a place in which we can
move [39]. In this paper, the scene corresponds to the place
where an action is being performed such as tennis court and
croquet field. Each image is associated with a probability of
belonging to one of the scene classes. Several experimental
studies have shown that when humans view a scene, they
extract functional and categorical information from the
scene, whereas they tend to ignore information regarding
specific objects and their locations. In accordance, Oliva and
Torralba [39] bypass the segmentation and processing of

individual objects in their scene classification framework.
Rather than looking at a scene as a configuration of objects,
they propose to consider a scene like an individual object,
with a unitary shape. They show that scenes belonging to
the same category share a similar and stable spatial
structure that can be extracted at once, without segmenting
the image. A set of holistic spatial properties of the scene,
together referred to as a Spatial Envelope, are used, which
include naturalness, openness, roughness, ruggedness, and
expansion. We use their approach to compute the con-
catenated feature vector for every image in the data set.
Using the training feature vectors we train a Support Vector
Machine (SVM) for the classification task. For a test image,
the SVM returns a score dS which represents the distance of
the test point from the separating hyperplane. Based on this
distance, we estimate the probability P ðSjeSÞ as

P ðSjeSÞ ¼
1

ZScene
expð��ScenedSÞ; ð5Þ

where �Scene is the scaling parameter and ZScene is the
normalization factor.

4.4 Scene Objects

Each scene object node corresponds to a class of scene objects
and is represented by the probability of presence of that
object class across the image. We uniformly sample points
across the image and extract a patch around each point (for
experiments, grid points are sampled at 25 pixels each in the
x, y direction and the patch size of 50� 50 is used). We
classify each patch as belonging to one of the N scene object
classes, using an adaboost-based classifier [55] based on
features such as HOG, histograms of each color channel
(eight bins each in color channel), and histograms of edge
distance map values within the neighborhood. We compute
P ðSOijSÞ based on the conditional probability tables learned
using the co-occurrence relationships in the training data set.

4.5 Human in Action

Every detected person in the image is characterized by the
action (A) he is performing, and location given by a
bounding box (lH). For action classification, we detect
humans and employ the pose information. A similar
approach has been proposed in a recent paper [13]. In our
experiments, we detect humans using an approach similar
to [59]. Since the observed image shape of a human, changes
significantly with articulation, viewpoint, and illumination,
it is infeasible to train a single human detector for all
shapes. Instead, we first cluster the observed shapes from
our training data, and train multiple human detectors, one
for each shape cluster. Our human detectors closely match
those proposed by [9]. Given a bounding box around a
detected human, we segment the human using GrabCut [4],
an efficient tool for foreground segmentation. Once we have
a possible human segmentation, we extract shape context
features (5 radial bins and 12 orientation bins) from the
silhouette of the human. We then cluster shape context
features [1] from the training database to build a dictionary
of “shape context words.” A detected human in an image is
then characterized by the histogram of shape context words.
The number of words/clusters determines the dimension-
ality of our pose feature vector. We then use the K-Nearest
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Fig. 12. Graphical model. The observed and hidden nodes are shown in

blue and white, respectively.



Neighbor approach for classification, providing P ðHjeHÞ.
Given a test sample, we determine the K-nearest neighbors
in the training data. Each of the K neighbors vote for the
class it belongs to with a weight based on its distance from
the test sample. The final scores obtained for each class
determine the likelihoods for each pose category, P ðHjeHÞ.
For the experiments used in the paper, we use K ¼ 5.

We also need to compute P ðHjS; SO1::SONÞ. Assuming
conditional independence between scene object categories
given human action, we rewrite as

P ðHjS; SO1::SONÞ ¼
YN

i

P ðHjS; SOiÞ: ð6Þ

Each of these can be computed using co-occurrence
statistics of human action-scene-scene object combinations,
independently for every scene object class.

4.6 Manipulable Objects

Each detected manipulable object in the image has the
following attributes: an associated class id (cmi ) and location
parameters given by a bounding box (lmi ) around the object.
We use the object detector described in Section 3.3. Using
this approach, however, we are unable to distinguish
between objects that have the same shape but a different
dominant color; for example, a cricket ball (often red or
white in color) as opposed to a tennis ball (often yellow in
color). Thus, we build appearance models of manipulable
objects using nonparametric Kernel Density Estimation
(KDE) to also perform an appearance-based classification.
We sample pixels from training images of the manipulable
objects and build a 3D model in the RGB space.

pModelðr; g; bÞ ¼
1

N

XN

i¼1

K�rðr� riÞK�gðg� giÞK�bðb� biÞ: ð7Þ

Given a test image, we first use the shape-based classifier
to detect potential object candidates. Within each candidate
window, we sample pixels and build a density estimate
using KDE. This test density is compared to the color model
of every object category using the Kullback-Leibler distance.
This provides the final manipulable object detection
probabilities based on appearance given by P ðMOijeapMOi

Þ.
Therefore, the probability P ðMOijeMOi

Þ is given by

P ðMOijeMOi
Þ ¼ P

�
MOi

��eshMOi

�
P
�
MOi

��eapMOi

�
; ð8Þ

where esh refers to shape and eap refers to appearance
evidence. We also need to compute P ðMOijHÞ. Human
actions and locations provide both semantic and spatial
constraints on manipulable objects. The spatial constraints
given human locations are with respect to the type of
manipulable object and type of action being performed. We
model two kinds of spatial constraints: 1) Connectivity—
Certain manipulable objects like a tennis racket or a cricket
bat should be connected to the human in action. 2) Positional
and Directional Constraints—These location constraints are
evaluated with respect to the centroid of the human that is
acting on them. The conditional probability densities are
based on the type of action being performed. For example,
given a tennis-serve action, it is more likely that the ball is
above the player, while, if the action is forehand, it is more

likely to the side of the player. We model positional relations
in terms of the displacement vector of the object centroid
from the centroid of the human body. Thus, we obtain

P
�
MOi ¼

�
cmi ; l

m
i

�
jH ¼ ðA; lHÞ

�
¼ P

�
lmi
��cmi ; A; lH

�
P
�
cmi
��A
�
:

ð9Þ

The first term refers to the spatial constraints and can be
learned by discretizing the space around the human as
shown in Fig. 13. From the training images, we learn the
condition probability tables of the region in which the
manipulable object lies given the type of manipulable object
and the type of action. The second term is the semantic
constraint and is modeled from co-occurrence statistics of
human action-manipulable objects combinations from
training data.

5 EXPERIMENTAL EVALUATION

5.1 Video Interpretation

We evaluated our video interpretation framework on test
data set8 of 10 subjects performing six possible interactions
with four different objects. The objects in the test data set
included cup, spray bottle, phone, and flashlight. The
interactions with these objects were drinking from a cup,
spraying from a spray bottle, answering a phone call, making
a phone call, pouring from a cup, and lighting the flashlight.

Training. We used a fully supervised approach for
training the Bayesian model for video interpretation.
Training of the model requires training of a HOG-based
detector for all object classes and HMM models for all classes
of interactions. Training for HOG-based object detector was
done using images from training data sets obtained using
Google image search (50 images for each object, negative
images were used from INRIA and CALTECH data sets).
HMM models were trained using a separate training data set
of videos. The object reactions are learned using the
supervised training scheme. In training videos, the frames
for the object reaction were manually segmented and the
appearance histograms around the hand were used to learn
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8. The data sets used in all the experiments are available online and can
be downloaded from http://www.umiacs.umd.edu/~agupta.

Fig. 13. Spatial constraints between locations of manipulable objects
and humans for different poses. In an idealized scenario, for a forehand
pose, the ball is more likely to be seen on the side; for a tennis-serve, it
is more likely to be seen above the human. We use two radial bins and
eight orientation bins to specify position of manipulable object with
respect to the human body.



the appearance of object reaction. Additionally, our model
requires co-occurrence statistics of object-interaction-reac-
tion combinations, distance between grasp location and
object center, and reaction-time ratios. We used a training
data set of 30 videos of five actors performing different types
of manipulations on the objects. Training was done in a fully
supervised manner. All of the videos were manually labeled
with object locations, hand locations and the type of objects,
manipulation, and object reactions.

Object classification. Among the objects used, it is hard
to discriminate the spray bottle, flashlight, and cup because
all three are cylindrical (see Figs. 16a and 16b). Furthermore,
the spray bottle detector also fired for the handset of the
cordless phone (see Fig. 16d). Our approach was also able to
detect and classify objects of interest even in cluttered
scenes (see Fig. 16c). Figs. 14a and 14b show the likelihood
confusion matrix for both the original object detector and
the object detector in the human-object interaction frame-
work. Using interaction context, the recognition rate of
objects at the end of reach locations improved from
78.33 percent to 96.67 percent.9

Action recognition. Of the six activities, it is very hard to
discriminate between pouring and lighting on the basis of
hand trajectories (see Figs. 16a and 16b). While differentiat-
ing drinking from phone answering should be easy due to
the differences in endpoint locations, there was still
substantial confusion between the two due to errors in
computation of hand trajectories. Fig. 15a shows the
likelihoods of actions that were obtained for all the videos
using hand-dynamics alone. Fig. 15b shows the confusion
matrix when action recognition was conducted using our
framework. The overall recognition rate increased from
76.67 percent to 93.34 percent when action was recognized
using the contextual information from objects and object
reactions. While the trajectories might be similar in many
cases, the context from object provided cues to differentiate
between confusing actions. Similarly, in the cases of lighting
and pouring, contextual cues from object reaction helped in
differentiating between those two actions.

Segmentation errors. Apart from errors in classification,
we also evaluated our framework with respect to segmenta-

tion of reach and manipulation motion. The segmentation
error was the difference between the actual frame number
and the computed frame number for the end of a reach
motion. We obtained the ground truth for the data using
manual labelings. Fig. 17 shows the histogram of segmenta-
tion errors in the videos of the test data set. It can be seen
that 90 percent of detections were within three frames of
actual end-frames of reach motion. The average length of
the video sequence was approximately 110 frames.

5.2 Image Interpretation

Data set. We evaluated our approach on a data set which had
six possible actions: “tennis-forehand,” “tennis-serve,”
“volleyball-smash,” “cricket-defensive shot,” “cricket-bowl-
ing,” and “croquet-shot.” The images for the first five classes
were downloaded from the internet and for the sixth class,
we used a publicly available data set [29]. A few images from
the data set are shown in Fig. 19. The classes were selected so
that they had significant confusion due to scene and pose.
For example, the poses during “volleyball-smash” and
“tennis-serve” are quite similar and the scenes in “tennis-
forehand” and “tennis-serve” are exactly the same.

Training. We used a fully supervised approach for
training the Bayesian model for image interpretation. We
have to learn the parameters for individual likelihood
functions and parameters of the conditional probabilities
which model the interactions between different perceptual
analyses. To learn parameters of individual likelihood
functions, we trained individual detectors separately using
training images from Google image search (50 images each
for every object and 30 silhouettes each for the pose
likelihood). Learning parameters corresponding to condi-
tional probabilities requires a separate training data set of
images. Our training data set consisted of 180 images (30
from each class).

Evaluation. We tested the performance of our algorithm
on a data set of 120 test images (20 from each class). We
compared the performance of our algorithm with the
performance of models based on isolated components.
Fig. 20 shows the confusion matrix obtained using the full
model described in the paper. We also show some failure
cases in the figure. Our approach gave some misclassifica-
tions when the scene involved is the same but actions are
different such as bowling being classified as batting. This
occurs whenever the pose classification algorithm gives a
wrong action likelihood (mostly due to faulty segmentation
by Grabcut) and the manipulable object detector fails to find
any discriminating manipulable object.

Fig. 21a shows the performance of a pose-based classifica-
tion algorithm. We used the pose component of our model to
obtain the confusion matrix. As expected, the performance of
pose-only model is very low due to similar poses being
shared by different actions. For example, there is high
confusion between “tennis-serve” and “bowling,” since both
actions share a high arm pose. Similarly, we see confusion
between “bowling” and “volleyball.” The confusion between
“volleyball-smash” and “tennis-forehand” is mainly due to
incorrect segmentations by grabcut.

The comparison between overall performance of our
approach and the individual components is shown in
Fig. 21b. The performance of our approach was 78.86 percent
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9. The recognition rate depicts the correct classification of localized object
into one of the five classes: background, cup, spray bottle, phone, and
flashlight.

Fig. 14. Object likelihood confusion matrix: The ith row depicts the
expected likelihood values when ith type of object is present. The right
table shows the results of our whole framework, taking into account
action, object reaction, and reach motion. (a) HOG detector. (b) Using
whole framework.

morariu
Inserted Text
Fig. 18 shows some more object recognition results.  



as compared to 57.5 percent by the pose-only model and
65.83 percent by the scene-only model.

Figs. 22 and 23 show some examples of correct
classification by our algorithm. In both cases, our approach
rejects false positives because the belief in the objects falls
below the detection threshold when combined with other
elements like pose and scene information. For example, in
Fig. 22, the false positives of bats are rejected as they fail to
satisfy spatial constraints. Also, in both cases, detections
related to objects incongruent with scene and action
information are also rejected.

Influence of parameters. We evaluated our system with
respect to the parameters of each component of our system.
We varied the parameter �Scene used to obtain the scene
classification probabilities (Section 4.3). Fig. 24a shows that
action recognition accuracy increases with increasing �Scene,
but flattens out after a value of 5. The discriminative power
of the scene component lowers with decreasing �Scene and,
therefore, we observe a lower system performance. In our
experiments, we use �Scene ¼ 5.

Oliva and Torralba [39] use the Windowed Discriminant
Spectral Template (WDST) which describes how the
spectral components at different spatial locations contribute
to a spatial envelope property, and sample it at regular
intervals to obtain a discrete representation. One of the
components of their method, wScene, determines the coarse-
ness of this sampling interval. We varied the coarseness of
the sampling where smaller wScene refers to coarser
sampling. Fig. 24b shows our performance accuracy with
respect to wScene. Our action recognition accuracy reduces
for a very coarse sampling of the WDST, but is stable at
finer scales. We use wScene ¼ 4 for the experiments.

Our object detection module detects multiple objects in
the scene and passes the top few detections onto the
Bayesian framework. We evaluated our system accuracy
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Fig. 16. Results of object detection in the human-object interaction
framework. The likelihoods of the centers of different objects are shown
in different colors. The colors red, green, cyan, and magenta show the
likelihoods of cup, spray bottle, flashlight, and phone, respectively. (a) A
flashlight is often confused as spray bottle by the HOG detector.
However, when context from the framework is used there is no
confusion. (b) Similarly a cup is often confused with a wide spray bottle.
(c) Our detector can find and classify objects in clutter. (d) A spray bottle
detector often fires at the handset of cordless phones due to the
presence of parallel lines. However, such confusion can be removed
using our framework. Also note that the users do not have to wear long-
sleeved clothing for the hand tracking to work, since the pose estimation
framework uses a likelihood model based on edges and background
subtraction in addition to skin color for searching the correct pose. Fig. 17. Segmentation error histogram.

Fig. 15. Comparison of action likelihoods without and with contextual information. Each column represents the normalized likelihood values for six
possible actions. (a) HMM-based action recognition. (b) HMM-based recognition in interaction context.
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Fig. 18. Object recognition using contextual cues from reach, manipulation, and object reaction. As before, the colors red, green, cyan, and magenta

show the likelihoods of cup, spray bottle, flashlight, and phone, respectively. The activities in the four cases above are drinking, pouring, lighting, and

spraying, respectively.

Fig. 19. Our data set.

Fig. 20. Confusion matrix (full model): The figure shows the confusion matrix obtained using the full model. We also show some failure cases in the
adjoining boxes. (a) The scene in these cases is classified correctly as cricket ground; however, due to faulty segmentations, the hands of the bowler
are missed and the pose is misclassified as batting. (b) The pose is again misclassified as that of forehand due to some extra regions added to
human segment. The missed detection (shown in dotted blue) of croquet bat also contributes to the misclassification. (c) In both the cases the
segmentation fails, leading to inclusion of net with the human segment. (d) Apart from the error in the pose module, the racket is also missed and the
ball is not present in the scene.



with regards to the number of manipulable object detections

passed to the Bayesian framework. For lower number of

detections, the Bayesian framework has lower performance

due to missing true detections. For higher number of

detections, the Bayesian framework has lower performance

due to the confusion from false positives. This effect is more

pronounced for lower �Scene values where the scene

component has lower discriminativeness (see Fig. 24c).
Finally, we evaluated our system with respect to the

dimensionality of the pose feature vector. This dimension-

ality is determined by the number of “shape context words”

formed in the shape dictionary. Fig. 24d shows the accuracy

of our system against the dimensionality of the pose feature

vector. As expected, our performance reduces when using a

very small number of words. In our experiments, we use a

dictionary of 100 visual words resulting in a 100-dimen-

sional pose feature vector.
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Fig. 22. Some illustrative examples showing the performance of the system. (a) The likelihood of various objects using independent detectors. The
colors of the rectangles represent the likelihood probability (red meaning higher probability and blue meaning lower probability). (b) The posterior
probabilities after the framework was applied. (c) The final result of our approach. In the first example, the detector detects four possible mallets and
three possible croquet balls. After applying the spatial constraints, all the false positives are rejected as they fail to satisfy spatial constraints (the
other mallets are not connected to a human body and the other balls are above the detected human centroid). In the second example, the false
positives of bats are rejected as they fail to satisfy spatial constraints. Also, in both cases, detections related to objects incongruent with scene and
action information are also rejected. (Note the abbreviations T-Ball, C-Ball, V-Ball, and Cq-Ball refer to tennis, cricket, volley, and croquet balls,
respectively.)

Fig. 21. (a) Confusion matrix (pose only): The confusion matrix is that

only pose information is used for action classification. (b) Comparative

performance of our approach with individual components.

Fig. 23. Some other examples: In the first case, the tennis racket was
detected with a lower likelihood as compared to other objects. After
combining information from scene and action, the belief in the tennis
racket increases since the action and the scene are tennis-serve and
tennis court, respectively. In the second case, our approach rejects false
positives of objects such as a mallet and bat. These objects are rejected,
as they are not congruent to a volleyball-court and a volleyball-smash
action. The false positives in volleyballs are also rejected as they fail to
satisfy spatial constraints. Same abbreviations as in Fig. 22.



6 CONCLUSION

Recent studies related to human information processing

have confirmed the role of object recognition in action

understanding and vice versa. Furthermore, neuropsycho-

logical studies have also shown that not only videos but

also static images of humans in action evoke cortical

responses in the brain’s motor area, indicating that humans

tend to perceive dynamic information from static images as

well. Motivated by such studies, we present two Bayesian

models for interpretation of human-object interactions from

videos and static images, respectively.
Our approach combines the processes of scene, object,

action, and object reaction recognition. Our Bayesian

model incorporates semantic/functional and spatial con-

text for both object and action recognition. Therefore, by

enforcing global coherence between different perceptual

elements, we can improve the recognition performance of

each element substantially.
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