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Abstract. Motivated by an important insight from neural science that
“functionality is determined by pathway”, we propose a new deep net-
work framework that encodes information on sparse pathways, called
“channel-out network”. We argue that the recent success of maxout net-
works can also be explained as its ability of encoding information on
sparse pathways, while channel-out network does not only select path-
ways at training time but also at inference time. From a mathematical
perspective, channel-out networks can represent a wider class of piece-
wise continuous functions, thereby endowing the network with more ex-
pressive power than that of maxout networks. We test our channel-out
networks on several well-known image classification benchmarks, achiev-
ing new state-of-the-art performances on CIFAR-100 and STL-10.
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1 Introduction

Many recent works on deep learning have focused on ways to regularize network
behavior to avoid over-fitting. Dropout [1] has been widely accepted as an ef-
fective way for deep network regularization. Dropout was initially proposed to
avoid co-adaptation of feature detectors, but it turns out it can also be regarded
as an efficient ensemble model. The maxout network [2] is a newly proposed mi-
cro architecture of deep networks, which works well with the dropout technique.
It sets the state-of-the-art performance on many popular image classification
datasets. In retrospect, both methods follow the same approach: they restrict
updates triggered by a training sample to affect only a sparse sub-graph of the
network.

In this paper we provide a new insight into a possible reason for the suc-
cess of maxout, namely that it partially takes advantage of what we call “sparse
pathway encoding”, a much more robust way of encoding categorical information
than encoding by magnitudes. In sparse pathway encoding, the pathway selec-
tion itself carries significant amount of the categorical information. With a care-
fully designed scheme, the network can extract pattern-specific pathways during
training time and recognize the correct pathway at inference time. Guided by
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this principle, we propose a new type of network architectures called “channel-
out networks”. We run experiments with channel-out networks using several
image classification benchmarks, showing competitive performances compared
with state-of-the-art results. The channel-out network sets new state-of-the-art
performance on two image classification datasets that are on the “harder” end of
the spectrum - CIFAR-100 and STL-10 - demonstrating its potential to encode
large amounts of information with higher level of complexity.

2 Review of Maxout Networks

The maxout network [2] is a recently proposed architecture that is significantly
different from traditional networks in its activation style: the activation does
not take a normal single-input-single-output form, but instead the maximum
of several linear outputs. In [2], its advantage over normal differentiable acti-
vation functions (such as tanh) was attributed to its better approximation to
exact model averaging, and the advantage over rectified linear (Relu) activation
function was attributed to easier optimization at training time. Here we propose
another insight of the power of the maxout network. The idea is motivated by
a well-established principle in neural science: It is not the shape of the signal
but the pathway along which the signal flows that determines the functionality
of information processing [3]. The maxout node activates only one of the can-
didate input pathways, and the gradient is back-propagated only through that
selected pathway, which means the information imposed by the training sample
is encoded in a controlled sparse way. We call this behavior as “sparse pathway
encoding”. Note that although Relu networks also use sparse sub-networks, the
pathway selection is less structured than that in maxout networks, which might
be the reason that Relu networks are more vulnerable to over-fitting.

Although maxout networks encodes information sparsely, it does not infer
sparsely, i.e. when doing inference every weight parameter effectively partici-
pates in computation. Since the power of deep network lies in the hierarchical
feature structure, it is worthwhile to think about whether the sparse pathway
encoding can also be arranged in a hierarchical way. In this paper we made
our first attempt along this line by proposing a kind of network architecture
called “channel-out networks”, which is able to make active pathway selection
at inference time.

3 The channel-Out networks

A channel-out network is characterized by channel-out groups (Figure 1). At the
end of a typical linear layer (e.g. fully connected or convolutional layer), output
nodes are arranged into groups, and for each group a special channel selection
function is performed to decide which channel opens for further information flow.
Only the activation of the selected channels are passed through, other channels
are blocked off. When gradient is back-propagated through the channel-out layer,
it only passes through the open channels selected during forward propagation.
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Formally, we define a scalar/vector-valued channel selection function f(a1, a2, ..., ak)
which takes as input a vector of length k and outputs an index set of length l
(l < k). Elements of the index set are selected from the domain {1, 2, ..., k}:

fs(a1, a2, ..., ak) ∈ {1, 2, ..., k}
s from 1 to l

∀s 6= t, fs(·) 6≡ ft(·)

Then with an input vector (typically the previous layer output) a = (a1, a2, ..., ak) ∈
Rk, a channel-out group implements the following activation functions:

hi = I{i∈f(a1,a2,...,ak)}ai (1)

where I(·) is the indicator function, i indexes the candidates in the channel-out
group, ai is the ith candidate input, and hi is the output (Figure 1). There are
many possible choices of the channel selection function f(·). To ensure good per-
formance, we require that the channel selection function possesses the following
properties:

– The function must be piece-wise constant, and the piece-wise constant re-
gions should not be too small. Intuitively, the function has to be “regular
enough” to ensure robustness against the noise in the data.

– The pre-image size of each possible index output must be of almost the
same size. In other words, each channel in the channel-out group should be
equally likely to be selected as we process the training examples (so that the
information capacity of the network is uniformly utilized).

– The computation cost for evaluating the function must be as low as possible.

Figure 2 compares a channel-out network with a maxout network. We can
see that a channel-out network can actively select the pathway at a higher layer
while maxout can’t.
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Fig. 1: Operation performed by a channel-out group

A side effect of enabling the network to do active pathway selection is the po-
tential saving on computation power. As a concrete example, suppose all channel-
out groups in a network are of size k and the channel selection function output
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arg max(·)

maxout node

Maxout network Channel-out network
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f(·)

Fig. 2: Difference between maxout and channel-out: A maxout node is attached to
a set of FIXED output links, resulting in same output pathway for different input
pathways; A channel-out group is connected to a set of different output links, resulting
in distinct output pathways.

is scalar. Consider a layer that’s not the input or the output layer, with input
dimension of m and output dimension of n. In forward propagation, since only
m/k of the inputs are active, we can take advantage of index recording to re-
duce the computational cost to 1/k compared with a maxout layer of same size
1. In back propagation, since both input and output active nodes are sparse, the
computation can be reduced to 1/k2 of a full matrix computation. Maxout can
also take advantage of sparsity of outputs to get 1/k computation reduction in
back propagation, therefore channel-out training can be k times faster in back
propagation also. Note that a channel-out layer and a maxout layer of same size
(number of parameters) means that the number of channel-out groups of the
channel-out layer is 1/k of the number of maxout nodes in the maxout layer.

To confirm that pathway encoding is indeed important in pattern recogni-
tion, we record the pathway selections of a well-trained channel-out model (with
max(·) channel selection function) using the CIFAR-10 dataset. For ease of visu-
alization and analysis, we set the size of channel-out groups to 2, so that we can
use binary codes to represent the pathway selection. To better visualize the space
of pathway patterns, we perform PCA analysis on the pathway pattern vectors
and project them into the three dimensional space. Figures 3 shows the result.
We can see that clusters have been well formed. Another interesting observation
in our empirical study is that channel-out models with different initializations
result in similar spatial class distributions in 3D PCA space, implying the ro-
bustness of pathway code as a feature.
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Fig. 3: 3D visualization of the pathway pattern: channel-out

1 we found empirically that a channel-out networks and a maxout network with similar
number of parameters will perform similarly in practice, so the premise for compar-
ison is valid
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4 Analysis of the channel-out network

In this section we give an intuitive explanation about why sparse pathway en-
coding works well in practice, especially when combined with dropout.

Recall that dropout, with each presentation of a training sample, samples a
sub-network and encodes the information revealed by the training sample onto
this sub-network. Since the sampling of data and sub-networks are independent
processes, in a statistical sense the information provided by each training sam-
ple will eventually be “squeezed” into each of these sub-networks (third row of
Figure 4). The advantage of such scheme, as has been pointed out in various
papers [1, 4, 5], is that the same piece of information is encoded into many differ-
ent representations, adding to the robustness at inference time. The side-effect,
which has not been highlighted before, is that encoding conflicting pieces of in-
formation densely into sub-networks with small capacities causes interference
problem. Data samples of different patterns (classes) attempt to build different,
maybe highly conflicting network representations. When the sub-network is not
large enough to hold all the information, opposite activations tend to cancel each
other, resulting in ineffective encoding.

In contrast to dropout, sparse pathway encoding tends to encode each pat-
tern onto one or a few specialized sub-networks. This is illustrated in the fourth
row of Figure 4. Clearly, sparse pathway methods mitigate the interference prob-
lem caused by dropout. The problem with pure sparse pathway encoding is the
under-utilization of network capacity. Patterns can be compactly encoded on to
a small local sub-region of the network, leaving the rest of the network capacity
unused. Finally, combining sparse pathway encoding and dropout can take ad-
vantage of the strengths of both methods to generate more efficient and accurate
information encoding: the whole network will get used due to random sampling
by dropout, while individual patterns are still compactly encoded onto certain
local sub-networks, so that interference across patterns is much less severe. This
is illustrated in the last row of Figure 4.

5 Benchmark Results

In this section we show the performance of the channel-out network on several
image classification benchmarks. For all experiment results in this section, the
channel selection function used is the max(·) function. We run tests on CIFAR-
10, CIFAR-100 [6] and STL-10 [7], significantly outperforming the state-of-the-
art results on CIFAR-100 and STL-10.

Our implementation is built on top of the efficient convolution CUDA kernels
developed by Alex Krizhevsky [6]. We got new state-of-the-art performance on
CIFAR-100 (63.4%) and STL-10 (69.5%). Our result on CIFAR-10 (86.80%)
does not beat sate-of-the-art, but is still competitive, and we believe that better
results can be obtained if we spend more time on hyper-parameter tuning.
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Prototypes:    

Network capacity:  
                

Encoding pattern on traditional deep networks 

Dropout encoding pattern 
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Fig. 4: Information encoding patterns. Each bin in the network capacity box represents
a certain size sub-network. Dropout tends to encode all patterns to each capacity bin,
resulting in efficient use of network capacity but high level of interference; Sparse path-
way methods tend to encode each pattern to a specific sparse sub-network, resulting in
least interference but waste of network capacity; The best approach is the combination
of the two schemes.

5.1 CIFAR-10 [6]

The network used for CIFAR-10 experiment consists of 3 convolutional channel-
out layers, followed by a fully connected channel-out layer, and then the softmax
layer. The best model has 64-192-192 filters for the corresponding convolutional
layers, and 1210 nodes in the fully connected layer. Dropout regularization is
applied. No data augmentation is used.

The result along with the best CIFAR-10 results in the literature are shown in
Table 1 (results with no data augmentation). The channel-out network performs
a bit worse than the state-of-the-art set by maxout network, but is better than
any of the other previous methods as far as we know. We believe that the channel-
out performance could be further improved if we use a larger network and the
hyper-parameters are better tuned.

Method Precision

Maxout+Dropout [2] 88.32%
Channel-out+Dropout 86.80%

CNN+Spearmint [8] 85.02%
Stochastic Pooling [9] 84.87%

Table 1: Best methods on CIFAR-10

5.2 CIFAR-100 [6]

The CIFAR-100 dataset is similar to CIFAR-10, but with 100 classes. The
channel-out network tuned for CIFAR-100 has similar achitecture as that for
CIFAR-10. Images are pre-whitened and when presented to the network each
time, they are horizontally flipped with probability 0.5. The test set precision
was 63.41%, improving the current state-of-the-art by nearly 2 percentage points.
Table 2 shows the best results on CIFAR-100.
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Method Precision

Channel-out+Dropout 63.41%
Maxout+Dropout [2] 61.43%
Stochastic Pooling [9] 57.49%
Learned Pooling [10] 56.29%

Table 2: Best methods on CIFAR-100

Motivated by the better performance on CIFAR-100 over CIFAR-10, we per-
formed another experiment to test the assumption that channel-out networks
might be better at encoding more variant patterns. We extract 10, 20, 50, 100
classes from the original dataset to form 4 classification tasks. We train a channel-
out and a maxout network with similar number of parameters for each of the
four tasks. We can see from Figure 5 that channel-out performs better on tasks
with more classes. We used smaller networks in this experiment for quick test.
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Fig. 5: Comparison of channel-out and maxout on 4 tasks of different difficult levels:
channel-out does better on tasks with more classes.

5.3 STL-10 [7]

STL-10 is also a 10-class small images dataset, but with more variant patterns
and background clutters than CIFAR-10. The network constructed is similar to
that for CIFAR-10. Whitening and flipping are applied to data. Our method
improves the current state-of-the-art by 5%, as is shown in Table 3.

Method Precision

Channel-out+Dropout 69.5%
Hierarchical Matching Pursuit [11] 64.5%

Discriminative Learning of SPN [12] 62.3%

Table 3: Best methods on STL-10

6 Conclusions

We have introduced the concept of sparse pathway encoding and argued that this
can be a robust and efficient way for encoding categorical information in a deep
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network. Using sparse pathway encoding, the interference between conflicting
patterns is mitigated, and therefore when combined with dropout, the network
can utilize the network capacity in a more effective way. Along this direction
we have proposed a novel class of deep networks, the channel-out networks.
Our experiments show that channel-out networks perform very well on image
classification tasks, especially for the harder tasks with more complex patterns.
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