

An Effective Approach to Temporally Anchored Information Retrieval

Zheng Wei and Joseph JaJa

Department of Electrical and Computer Engineering

Institute for Advanced Computer Studies

University of Maryland, College Park

{zwei, joseph}@umiacs.umd.edu

ABSTRACT

We consider in this paper the information retrieval problem over a collection of time-evolving documents such

that the search has to be carried out based on a query text and a temporal specification. A solution to this problem

is critical for a number of emerging large scale applications involving archived collections of web contents, social

network interactions, blog traffic, and information feeds. Given a collection of time-evolving documents, we

develop an effective strategy to create inverted files and indexing structures such that a temporally anchored query

can be processed fast using similar strategies as in the non-temporal case. The inverted files generated have

exactly the same structure as those generated for the classical (non-temporal) case, and the size of the additional

indexing structures is shown to be small. Well-known previous algorithms for constructing inverted files or for

computing relevance can be extended to handle the temporal case. Moreover, we present high throughput,

scalable parallel algorithms to build the inverted files with the additional indexing structures on multicore

processors and clusters of multicore processors. We illustrate the effectiveness of our approach through

experimental tests on a number of web archives, and include a comparison of space used by the indexing

structures and postings lists and search time between our approach and the traditional approach that ignores the

temporal information.

KEYWORDS: INFORMATION RETRIEVAL, TEMPROAL QUERY, TEMPORAL INDEXING, PARALLEL ALGORITHMS, CLUSTER

 2

1. INTRODUCTION

A number of critical emerging applications require the organization and management of an extremely large

number of time-evolving objects, such that these objects will need to be interactively explored through content

based search within a temporal context. Consider for example the Congressional Web Archive, assembled and

managed by the Library of Congress, which includes regular snapshots of selected news and government web

sites. A temporally anchored query over such a collection could be used, for instance, to determine a politician’s

changing views over time regarding a particular issue. Today a large number of time-stamped collections of

contents being generated or communicated through the internet are archived for later processing and analysis. Our

main goal in this paper is to develop an effective approach for tackling such applications using and extending

information retrieval technologies. More specifically, we develop an efficient strategy for building the inverted

files, supplemented by new indexing structures, such that a temporal-based search can be carried out as efficiently

as in the text-based search for non-temporal collections. The overhead required for building the extra indexing

structures is shown to be minimal when compared to the traditional approach.

Information retrieval technologies have not traditionally dealt with the temporal dimension. For example, major

web search engines such as Google, Yahoo, and Bing support queries on the web pages that are currently

available on the web. Their basic approach is not tailored to handle temporally-anchored searches such as locating

the most important news about Barack Obama before year 2005. While the internet is by far the largest library

that ever existed, its contents are always changing, and hence old valuable contents can be lost forever if not

archived and preserved properly. Major library and archiving organizations are constantly crawling the web to

capture and archive particular contents of interest. Such contents constitute a collection of time-evolving

documents; each document corresponds to a specific uniform resource identifier (URI) with its corresponding

document versions time stamped by the crawl times. Such organizations include the Internet Archive [1], the

Library of Congress [2], UK Web Archiving Consortium [3], the National Library of Australia [4] and the

California Digital Library [5]. In particular, over 5.8 petabytes of web data have been captured by the Internet

Archive Petabox project as of December 2010 [6], which continues to grow at a rate of more than 100 terabytes

per month since 2009 [1]. The Internet Archive uses its WayBack machine to search such contents where the user

supplies a URL and the engine responds with a chronological list of the dates when the corresponding page was

crawled. Other much more dynamic contents produced through social networks, news and various types of

information feeds, and blogs are also captured on a regular basis and archived with temporal information. Our

work includes the temporal dimension as an integral component of the strategy to build the inverted files so that

queries containing text and a time specification can be handled efficiently.

The rest of the paper is organized as follows. In the next section, we provide a brief background and a summary of

the previous related work on temporally anchored information retrieval. In Section 3 we formally define the

problem and introduce the new indexing structures needed for managing the temporal dimension. In Section 4, the

query performance is examined using our new indexing structures. Very high-throughput parallel algorithms for

constructing the temporal inverted files are developed in Section 5 and the corresponding experimental results are

presenting in Section 6. We conclude in Section 7.

2. BACKGROUND AND PREVIOUS RELATED WORK

We assume that each document, which refers to a time-evolving object in this paper, is uniquely identified by a

global identifier such as a URI. In this case, a document may have many versions over time, each of which

includes a time stamp that indicates the start time of the document version. Only one version of a document can

exist at any time. The start time could be the time when the document version was created or the time when the

document was first seen. For example, in web archiving, a time stamp is assigned whenever the corresponding

web page is crawled, and the versions correspond to the crawled distinct pages all of which belong to the same

 3

URL We allow a document to cease to exist either for a while (for example, a web page that is unreachable during

several consecutive crawls but reachable afterwards) or permanently.

A considerable amount of research has been conducted to deal with various aspects related to the construction of

inverted files and related search strategies. Here we focus our review on the work related to the temporal case.

Previous work for the temporal case has been limited. A temporal document database first developed in [7]

introduced a solution with a hybrid of document name index, version database, and text index. The document

name index maps a document identifier to its list of global Version IDs since a document may have several

versions. The version database assigns global Version ID to versions of documents according to the start time, but

two contiguous global Version IDs may refer to two versions of different documents. The list of document

versions that a term appears in can be found in the text index (or the inverted files in our definition). In [8], the

global Version ID is replaced by <Document ID, Document Version ID> tuple, thereby if a term appears in

several consecutive versions of a document, its postings could be shrunk into <Document ID, Document Version

ID range> tuples for space efficiency. A Time Index+ is further incorporated for frequent terms for large

document databases [9]. Since the target is a database for versioned documents, a temporal query has very high

cost using the text index since the whole postings list has to be scanned and, moreover, critical elements such as

term frequency or term positions in a document are not available for scoring. Berberich et. al. [10] extended the

traditional postings to <Document ID, score, time_start, time_end>. Postings with the same Document ID and

similar scores are merged to reduce the space requirement thereby employing a lossy compression strategy. To

reduce search cost, postings lists are split into sublists that are valid time intervals so that only the sublists valid in

the time range in the query will be traversed. Based on this, Anand et. al. [11] further proposed the sharding

approach for efficient temporal inverted files in both space and query processing time. However, both [10] and

[11] work with stored datasets in batch mode and it is unclear how to extend this approach to incrementally

update the inverted files. In [12] an approach is proposed based on temporal partitioning of the collection into

time windows. An analytical model is used to determine an optimal size of the time windows based on some

assumptions on the input distribution.

3. PROBLEM DEFINITION AND TEMPORAL STRATEGY

3.1 Problem Definition

Following standard information retrieval terminology, we refer to the objects in our collection as documents, each

document is uniquely identified by a global identifier such as a URI. Each document evolves over time and hence

many versions of the document may exist. A document version Doci,j denotes the j
th
 version of the document

identified by URIi , which was first created or detected at time ti,j and hence can be represented by:

where T
ij
 is a term that occurs in Doci,j and Ni,j is the total number of terms in Doci,j. By definition, the start time

of a document version is equal to ti,j, but the end time is not defined until a new version Doci,j+1 occurs in which

case it is equal to ti,j+1, or the document ceases to exist in which case it is equal to the time when this occurs. The

lifetime of the document version Doci,j is then defined as the time interval between the start time and the end time.

A query in the temporal case contains a set of query terms {Qk}, possibly connected by Boolean operators, and a

query time tQ. A document version Doci,j matches the query if it contains some or all the terms in {Qk} (depending

on the query Boolean operator) and is alive at tQ, that is, tQ lies in the time interval between the start time and the

end time of Doci,j The result of the search is a ranked set of document versions based on a scoring function used to

determine similarity scores between the query and the document versions matching the query. Note that the

 4

computation of the scoring function typically requires some global statistics at tQ such as the number and average

length of live document versions and the number of live document versions containing Qk (i.e. document

frequency of Qk). In this paper, we will use the well-known Okapi BM25 function to compute the scores.

However, it should be easy to incorporate other scoring functions into our strategy.

As in the traditional case, we assign a monotonically increasing global Version ID (VID) to each document

version and incorporate this VID into the postings lists to identify the appropriate document version in our

collection. From now on, we use the notation VIDi,j to uniquely identify the document version Doci,j. Note that we

are assuming that our collection consists of document versions over discrete time steps called elementary time

steps. An elementary time step captures the time granularity of the document collection as well as the granularity

at which queries can be answered. For example, the Wikipedia collections, to be described later, are monthly

snapshots of Wikipedia generated at the end of a month. Hence in this case, an elementary time step is a month

which constrains tQ to be within a month such as February 2004. Within an elementary time step, there is at most

one document version per URI and the global statistics remain the same within that time step. All time values

defining start and end times correspond to elementary time steps. As a result, if document versions are processed

in the chronological order of increasing elementary time steps, it is guaranteed by our VID assignment strategy

that the start time of a higher VID is later than or equal to the start time of a lower VID.

3.2 Overall Strategy for Temporal Indexing and Searching

Our overall strategy is similar to the traditional strategy of using postings lists: each posting consists of the VID

and the term frequency within that document version, sorted according to the VIDs on the list. Other information

can be incorporated into the postings as needed. However to carry out temporal searching effectively, we

introduce two new indexing structures, in addition to the usual global dictionary structure. The new data

structures are two temporal tables defined as follows:

VID table, which maps a VID to its unique URI, start and end times, document length and possibly other

document version information (such as location on disk of the document version). Note that a similar data

structure is typically built for the non-temporal case, except that it does not include the start and end times.

URI hash table, which is used during the construction of the VID table, will map each URI to its most recently

seen VID as the document versions are processed. Another possibility is to allow the hash of a URI to include the

VIDs of all the corresponding document versions encountered so far, which can later be used to quickly look for

all the document versions of a particular document. However in this paper, the hash of a URI contains only a

single VID or is equal to -1 indicating that the URI has ceased to exist at this stage during the processing of the

document versions to build the VID table and the postings lists.

Accordingly the format of a posting changes from the traditional <Document ID, term_freq> to <VID,

term_freq>. Note that, in the work reported in [10, 11], each posting includes the life time of a document such as

<Document ID, time_start, time_end, term_freq>. Such an approach returns the lifetime of a document version

directly from the postings list at a substantial space cost since the same start and end times have to be duplicated

in the postings lists for all the terms that appear in this document version. Moreover, using our approach,

traditional schemes can be easily extended to generate the new postings lists such that the postings are sorted in

ascending order of VID, and hence can be easily compressed.

Let us now consider how a query with a query time tQ can be handled using our indexing structures and the

postings lists. A straightforward approach would be to start by retrieving all the matching VIDs from the postings

lists of the query terms, and then determine the temporal validity of each VID by looking up its lifetime using the

VID table. This strategy can be easily implemented. However, as mentioned in [10, 12], the postings lists can

grow very large, which can introduce a very high overhead when determining the valid VIDs matching the time

 5

constraint of the query. To tackle this problem, the authors of [10, 12] propose an approach based on splitting

each postings list into many segments after the postings lists are constructed.

Our approach will be very different. As we are building the temporal inverted files, we will construct different

segments on the fly such that each segment belongs to a certain time span determined dynamically, and each time

span is the same for all the postings lists. We refer to the time span covered by a segment as a time window, which

is somewhat similar to the time window notion introduced in [12]. A time window [TW_start, TW_end) consists

of one or more elementary time steps such that each elementary time step belongs to a time window and no two

time windows overlap. A document version VIDij is considered alive in this time window if there is an overlap

between [ti,j,ti,j+1) and [TW_start, TW_end], i.e. VIDij is alive for some time within this time window.

In our approach, each time window has its separate postings lists (segments) and VID table corresponding to all

the document versions that are alive within this time window. Query can now be localized to a single time

window, which substantially reduces the search time. Moreover, our approach has the added advantage of

incorporating additional document versions incrementally under a new time window. However, this comes at the

cost of storing some duplicate postings in consecutive time windows due to the fact that some document versions

will be alive across a time boundary. This implies that the postings of a document version will be replicated

through all the time windows in which this document version stays alive. Therefore a long-lived document

version may appear in many time windows and hence will generate multiple copies of the same postings in the

output. However as we will see later, this overhead is relatively small overall if the time windows are selected

carefully, and the search time is dramatically improved.

Figure 3.1. An Example of Temporal Indexing

 6

To fix the ideas, let us consider a small example. A collection with five documents is illustrated in Figure 3.1,

where all documents contain term Term_t and the time stamp ∞ indicates that the document is still alive. Times t2

and t4 are the starting points of time windows. Note that document version VID4 is alive in the three time

windows shown, and hence it has a footprint in the postings lists in all three segments. Note also that the URI

hash table shown corresponds to the hash table at the end of the indexing process.

At one extreme, we can set each time window to be the same as an elementary time step, and hence a search will

be immediately localized to the corresponding postings lists with no need to check the time validity of the

postings, and hence the search can be carried out quite fast (best possible search time). However this will come at

an extremely large space cost for the output files. The other extreme is to have a single time window covering all

the elementary time steps, which will correspond to the smallest possible output file, but with generally

unacceptable search time through very large postings lists. Therefore we need to strike a compromise between

these two extremes and try to reach a balance between the query response time and the total size of the postings

lists.

We consider three possible strategies for determining the appropriate window size.

Even-Time, which splits the document collection into several time windows such that every time window covers

the same length of time period. This will make it straightforward to locate the appropriate postings lists and VID

tables for any query time during search.

Even-Size, which monitors the total uncompressed size of input files such that a new time window is started when

the collection size managed under the current time window exceeds a threshold. Such a strategy may yield to

similar size postings lists under the different time windows.

Output-Oriented, which forces an upper bound on the size of the output postings lists. Hence a new time window

is started when the total size of the postings lists or average size of the postings lists under the current time

window exceeds a preset threshold.

The first strategy was used in [12]. For example, the 36-month Congressional document collection (to be

introduced in Table 4.1) was divided into three 12-month time windows. The second strategy attempts to ensure

that the collection size processed during each time window is about the same, and hence the output postings lists

from different time windows are expected to be of similar size. Note, however, that the final postings lists for a

time window also include those inherited from earlier time windows and hence even with the second strategy, the

total output size of the postings lists under a time window is only weakly controlled. The third strategy presents

the best option, but its implementation is the most complex.

3.3 Query Strategy

In this section, we take a look at the temporal query strategy details. Given all the necessary temporal inverted

files residing on disks, we can handle a temporal query with query terms {Qk} and query time tQ by executing the

following steps:

Step 1: Initialization of Search engine

Step 2: For each temporal query <Qk , tQ>, do:

Step 2.1: Determine the corresponding time window TW and retrieve the average document length at tQ;

Step 2.2: Parse the query string into individual query terms;

Step 2.3: Search all the query terms in the dictionary to locate their postings lists;

Step 2.4: Fetch data of all query terms from disks

 7

Step 2.4.1: Fetch the document frequency of each query term at tQ;

Step 2.4.2: Fetch and decompress the postings list in TW for each query term;

Step 2.5: Merge the postings lists to find all matching documents and compute scores;

Step 2.5.1: Merge the postings lists of all query terms to find out common VIDs;

Step 2.5.2: Check the validity of VIDs at tQ;

Step 2.5.3: Fetch the document lengths of the valid VIDs from the VID table;

Step 2.5.4: Compute the scores for the valid VIDs;

Step 2.6: Find the top K document versions with highest scores;

In Step 1, we load the dictionary from disk into memory, the time span of each time window, and elementary time

steps (ETS) such that, given a query time tQ, we can quickly find which time window and the ETS this tQ falls

into. We also assume that the VID table is pre-loaded into memory in this step.

Steps 2.1, 2.4.1 and 2.5.2 are unique to the temporal query scenario. Step 2.1 is trivial in general because the total

number of elementary time steps is typically not so large. For example, 1M elementary time steps correspond to

over 20 years of hourly snapshots. Steps 2.5.2 and 2.5.3 involve accessing the VID table but as we explained in

the last paragraph that the document length and file location still has to be obtained from some data structure in

the non-temporal case and hence we consider these two steps as not introducing any extra cost relative to the non-

temporal case. The overhead of Step 2.4.1 will be fully analyzed later.

We use the well-known Okapi BM25 function [13] to compute the scores in Step 2.5.4:

where N is the total number of documents, n(qi) is the number of documents with term qi, f(qi, D) is the term

frequency in D, |D| is the length of D, avgdl is the average document length in the collection, k1 and b are two

parameters, which we set to k1 = 2.0 and b = 0.75.

No approximation or lossy compression is used in our algorithm, and hence the scores and ranking results of the

temporal query reflect the exact scores given the collection of documents that are live at time tQ.

4. EXPERIMENTAL EVALUATION OF OUR STRATEGY

We use two significant collections that exhibit different characteristics of our strategy. The first collection is the

Congressional dataset from the Library of Congress, which includes 36 monthly snapshots of selected news and

government websites crawled between January 2004 and December 2006. The second dataset is the Wikipedia01-

07 data, which is derived from a publicly available XML dump of Wikipedia articles created on January 3, 2008

with 83 monthly snapshots between February 2001 and December 2007. The overall characteristics of the two

benchmarks are given in Table 4.1. The number of terms and tokens may vary with different implementations due

to the choice of tokenization and stemming procedures.

 8

The generated output, dictionary, the two temporal tables and postings lists, are written onto local disks.

Table 4.1. Statistics of Document Collections

 Congressional Wikipedia 01-07

Compressed Size 314GB 29GB

Uncompressed Size 1,672GB 79GB

Crawl Time 01/04 to 12/06 02/01 to 12/07

Document Number 28,731,237 2,077,745

Document Version Number 80,092,737 16,618,497

Average Versions per Document 2.788 7.998

Number of Terms 12,229,793 9,404,723

Number of Tokens 41,356,310,380 9,375,229,726

To evaluate our approach, we estimate the space overhead due to the introduction of the new indexing structures,

the URI hash table and the VID table, and then the query response time relative to the time windowing strategy

used. We note that we will show later in Section 6 that the processing time to create the inverted files with the

extra indexing structures is very close to that of the traditional strategy for processing the same collection while

ignoring the temporal information.

We start by taking a close look at our implementation of the new indexing structures.

4.1 URI Hash Table and VID Table: Implementation Details

At any time during the initial processing of the document collection, the URI hash table is used to map a URI into

the most recent VID of the document version encountered thus far. If multiple URIs hash to the same value, then

a singly linked list is created to store these URIs in a sorted order (according to URI strings) for fast insertion of a

new URI.

On the other hand, the VID table stores, for each VID, specific information pertaining to that document version

such as: start time t_start, end time t_end, document length, pointer to the corresponding URI string, and the

location of this document version within the underlying file system. In the non-temporal case, a similar data

structure is typically constructed as well to fetch this type of information pertaining to a document except for the

temporal information. A significant difference between the two cases is that during the indexing process an entry

of the VID table will be written twice (when the document version is first encountered and later when the end

time is determined) and will be read multiple times as we will see later in this section. On the other hand, in the

non-temporal case, each such entry is completely built during its creation and will not be read or written any more

during the indexing process.

When a document version is processed, given its {URIi, VIDij, tij, Doc_Length}, the URI hash table is first visited

to fetch the most recent VID corresponding to this URI, that is, VIDi,j-1. In the VID table, the t_end of VIDi,j-1 can

now be set to tij. Then, VIDij is inserted in the URI hash table indicating that this is now the most recent version.

The VID table will be updated with the rest of the information regarding VIDij except t_end, which cannot be

determined until a newer one VIDi,j+1 is encountered or the document ceases to exist.

As we process the collection of documents, we will only need the portion of the VID table whose entries are still

alive, that is, the entries whose end times have not been yet determined. Hence we will attempt to keep that

portion in memory, while most of the rest is stored on disk. To accomplish this goal, we note that most of the

 9

lower VIDs are not likely to be alive while the most recently assigned higher VIDs are still alive. Therefore we

maintain a small VID table in memory consisting of two parts: Part I contains the consecutive VIDs for higher

VIDs and Part II contains nonconsecutive VIDs for lower VIDs. All the rest of the entries are not alive and are

stored on disk. We construct and maintain Part I and Part II as follows.

The Part I (high VIDs) can be indexed directly by the VID so that the lookup time is very small, but it will grow

over time and many of the VIDs may no longer be alive. On the other hand, Part II is stored in a more compact

fashion in such a way that binary search can be used to look up an entry corresponding to a VID. In our current

implementation, if the size of Part I exceeds 8M after 100GB of input data are processed or at the end of a time

window), only the highest (also the most recent) 8M VID entries are kept in Part I and the remaining entries are

migrated to Part I,I followed by a complete scan on Part II so as to transfer the non-live entries onto disks (and

hence the size of Part II will shrink considerably). These parameters (8M and 100GB) have been determined

empirically and seem to yield the best performance on our platform.

Figure 4.1. Example of the VID Table Data Structure

A trivial example of the VID table is shown in Figure 4.1. In Part I, VIDs are implicit and can be calculated by the

sum of an offset and table index; on the other hand, part II stores the VIDs inside the table memory space

explicitly in sorted order. After the reorganization step, both Part I and Part II may appear as shown in Figure 4.1.

We will illustrate next the savings achieved by using such a strategy.

4.2 Growth of URI Hash Table and VID Table

We take a closer look at how the dynamic strategy used to manage the VID table contributes to saving space. The

VID tables in memory are checked periodically in such a way that invalid VIDs (that is, VIDs that are not live)

are written onto disks and some VIDs are migrated from the VID table Part I to Part II. As a result, after each

reorganization the size of the VID table Part II increases and the size of the VID table Part I shrinks back to 8M

entries as illustrated in the graph shown in Figure 4.2. On the other hand, the number of VIDs stored in the URI

hash table grows steadily over time. The top line in Figure 4.2 shows the total number of assigned VIDs, which

also reflects the number of entries in the entire VID table in the temporal case (which is also the same as the

corresponding data structure for the non-temporal case given the same collection). The difference between this top

line and the second top line indicates the memory savings achieved by using our dynamic strategy for managing

the VID table.

 10

Figure 4.2. Growth of URI Hash Table and VID Table

4.3 Relationship between Query Performance and Time Windows

In this section, we explore the effects of different strategies for selecting time windows on the sizes of the

postings lists and query performance. We will also compare these strategies to the traditional strategy when the

temporal component of the document collection is ignored. We use the Even-Size strategy to evaluate the impact

of the number of time windows on the size of the postings lists.

4.3.1 Size of Postings Lists Relative to the Number of Time Windows

Table 4.2. Output Size over the number of Time Windows

Number of

Time

Window

Compressed Output

PL Size (GB)
Total Number of Postings

1 33.7 27,591,138,345

3 42.0 35,514,010,829

9 88.6 71,112,310,390

18 136.6 110,371,532,702

36 248.1 199,463,515,717

We start by considering the compressed output size as a function of the number of windows for the Library of

Congress Congressional dataset. For the extreme case of a single time window, the generated postings lists are

exactly the same as those that would be generated had we indexed the document collection without paying

attention to the temporal information. The output size is minimal in this case since no duplicate documents have

to be considered. As the number of time windows increases, we expect the output size to increase since the

number of duplicate document versions across the time windows is expected to increase. This is illustrated in the

next table. Note that we only have 36 monthly snapshots, i.e. 36 elementary time steps, for this collection. The

compressed output size of postings lists increases about 7 times when the number of time window grows from 1

 11

to 36, which is comparable to the results in [10] where the number of postings increases from the original 8

million to over 54 million in the performance optimal scenario. Note also that the average lifetime of a document

version is about 11.2 months in this collection.

4.3.2 Detailed Query Processing Time

We now take a close look at the detailed query processing time. To conduct our tests, a thousand queries are

tested, each query having a random query time between 01/2004 and 12/2006, with three terms chosen randomly

from the dictionary. The search program runs on a CPU (Intel X5560) with a single thread such that the one

thousand queries are processed sequentially. A commodity 2.5 inch 5400RPM hard drive is used to store the

inverted files which are not preloaded into the memory by any caching strategy. We filter out the 10% slowest

query batches and calculate the average of the remaining 90% data. Such filtering is carried out due to two

reasons: (1) queries that consist of very popular terms map onto very long postings lists resulting in millions of

matching results, which will significantly slow down the search; (2) the first few queries are generally slower

because of the empty caches (including CPU cache, virtual memory and disk cache) but will later be filled up

resulting typically in accelerated memory and disk accesses. The same approach is used to represent the query

processing time in this paper.

We use the Even-Size strategy to split the entire collection into three time windows. Table 4.3 lists the average

processing times from Step 2.1 through Step 2.6 as well as the overall time of Step 2 of the search algorithm

presented in Section 3.3. We note that the most time consuming part is Step 2.4, in which the postings lists and

the document frequencies of the query terms are read into memory. As we have mentioned in Section 3.3, the

extra cost to processing a temporal query lies in the execution of Step 2.4.1, which is about 105ms for three query

terms or 35ms per query term, which is close to the 25ms random disk seek time that was observed through our

tests. Over 98% of the time is spent in executing Steps 2.4 and 2.5, and hence in the next sections we focus on

these two steps.

Table 4.3. Query Process Time in Step 2

Step
Time

(millisecond)

Step 2.1 Find ETS and TW 0.018

Step 2.2 Query Parse 0.010

Step 2.3 Search Dictionary 0.073

Step 2.4 Fetch Doc_Freq and PL 648.052

Step 2.4.1 Fetch Term Doc_Freq 105.905

Step 2.4.2 Fetch PL 540.517

Step 2.5 Merge and Score 80.539

Step 2.6 Display Top 100 Results 10.036

Total 741.894

4.3.3 Query Performance Relative to the Number of Time Windows

The main reason for introducing multiple time windows is to reduce query response time by localizing the search

into a small time frame that generates relatively short postings lists. We expect the number of time windows to

primarily influence the execution of Steps 2.4 and 2.5 since these steps process the postings lists corresponding to

 12

the query terms. The size of the VID table in each time window as the number of time windows increases, which

makes it quite possible for the local VID table to fit into the CPU cache and thereby accelerate the execution of

Steps 2.5.2 and 2.5.3.

Table 4.4. Query Performance as a Function of the Number of Time Windows

Number

of Time

Windows

Step 2.4 Fetch

Doc_Freq and PL

(millisecond)

Step 2.5 Merge

and Score

(millisecond)

Average Size of

Compressed PLs

for One Time

Window (GB)

Average Length

of PL per Term

for One Time

Window

1 2383.81 126.91 33.7 2256

3 648.05 80.54 14.0 968

9 372.66 28.07 9.8 646

18 310.21 21.79 7.6 501

36 300.64 21.35 6.9 453

Table 4.4 shows the execution times of Steps 2.4 and 2.5 corresponding to the number of time windows using the

Even-Size strategy. When the number of time windows is larger than 9, very limited performance gain is obtained

beyond that value because the average size of postings lists for a time window decreases very slowly with more

than 9 or more time windows. The size of postings lists from newly arrived document versions is roughly

proportional to the length of the current time window. Hence using many short time windows results in relatively

few newly generated postings within the time window with many that will be passed from the previous time

window. Consequently, the average size of postings lists in a time window decreases slowly with a large number

of time windows. On the other hand, the total size of postings lists from all time windows grows quickly as a

function of the number of time windows (from 9 to 36) with limited improvement on query performance.

Therefore, based on these empirical results, choosing three or nine time windows achieves an optimal balance

between space and performance for the Congressional dataset.

4.3.4 Summary

Figure 4.3 shows the relationship between the overall query response time, the sizes of postings lists, and the size

of the additional temporal indexes as a function of the number of time windows, assuming the Even-Size strategy.

Comparing the non-temporal case (i.e., indexing the collection without taking the temporal information into

consideration) and the temporal case with a single time window, we can see that only a small increase in query

response time is introduced to handle temporally anchored queries. Therefore, the query performance does not

suffer due to the additional temporal indexing structures even though we can now handle temporal queries. In fact

it can be improved using a temporal partition of the collection (in our case 3 or 9 time windows). In addition, our

indexing can incrementally process additional document versions and easily incorporate the new document

versions into our existing indexing structures.

 13

Figure 4.3. Impact of Time Window Numbers on Index Size and Query Performance

Table 4.5. Comparison of Additional Tables between Non-Temporal and Temporal Cases

Number of Time

Windows

Size of Doc_ID Table in

the Non-Temporal Case

Size of VID Table in

the Temporal Case

Non-Temporal 1.19 -

1 - 1.81

3 - 2.59

9 - 5.02

18 - 7.92

36 - 14.52

4.4.4 Relationship Between Query Performance and Different Time Window Strategies

In this section, we compare the query performance under the two distinct strategies introduced earlier, the Even-

Size strategy and the Even-Time strategy. By the Even-Size strategy, the resultant three time windows for the

Congressional dataset cover respectively 19 months (01/2004 to 07/2005), 10 months (08/2005 to 05/2006) and 7

months (06/2006 to 12/2006), and each time window consists of about 560GB of input. On the other hand, the

Even-Time strategy splits the 36 monthly snapshots into three time windows, each of which covers 12 months,

consisting of 235GB, 638GB, 796GB of input data respectively. Table 4.6 shows the sizes of the generated

postings lists after compression. Under the Even-Size strategy, the size of the postings lists grows slowly from

one time window to the next (due to the postings lists inherited from the previous time window). This is not the

case for the Even-Time strategy as the sizes of the postings lists increase significantly from one time window to

the next.

Table 4.6. Size of Output Size with Different Time Window Splitting Strategies

Time Window
Compressed Size of Output PLs (GB)

Even-Size Even-Time

1 12.6 5.4

2 13.9 13.2

3 15.5 22.3

 14

As for the query performance, the average query response time remains almost the same in either strategy if we

randomly choose a query time between 01/2004 and 12/2006. However, if we take a deeper look and capture the

average time required to process a query during Steps 2.4 and 2.5 with query time in years 2004, 2005 or 2006

separately, some interesting but expected results emerge as illustrated in Table 4.7. Since the size of output

postings lists grows quickly from 2004 to 2006 with the Even-Time strategy, the resultant execution time of Step

2.4 and Step 2.5 also increase at a similar rate. This leads to a query response time that fluctuates drastically. In

practice, this trend is likely to get worse if we assume that users will be more interested in recent document

versions and more temporal queries fall into year 2006. On the other hand, the Even-Size strategy yields much

more stable results for both Steps 2.4 and 2.5. The time cost is still growing but at a much smaller rate.

Table 4.7. Query Performance with Different Time Window Splitting Strategies

Query Time

Range

Step 2.4 Fetch Doc_Freq and PL

(millisecond)

Step 2.5 Merge and Score

(millisecond)

Even-Size Even-Time Even-Size Even-Time

2004 580.59 336.12 76.92 37.37

2005 614.21 655.24 81.39 76.02

2006 748.95 1124.66 84.30 99.78

5. PARALLEL ALGORITHMS FOR CONSTRUCTING THE INVERTED FILES IN THE

TEMPORAL CASE

In this section, we present high-throughput parallel algorithms for single multicore processors and for clusters of

such processors to build the inverted files for the temporal case. In addition to generating the postings for each

time window, our algorithms will construct a global dictionary, the URI hash table, and the VID tables, and will

incrementally process additional document versions as they are introduced under a new time window. Our starting

point will be the pipelined algorithms presented in [14, 15], which will be extended to build the additional

indexing structures and to manage postings lists that survive from a time window to the next. The resulting

throughput is comparable to the non-temporal case achieving scalability up to the largest cluster we have access

to.

5.1 Algorithm On A Single Multicore Node

5.1.1 Overall Approach

The pipelined algorithm presented in [14, 15] consists of a parsing stage during which each of a number of parsers

reads a fixed size block (roughly 1GB) from the disk containing the documents, executes the parsing algorithm,

and then writes the parsed results onto a buffer. A number of indexers pull the parsed results from the buffer as

soon as they are available and jointly construct the postings lists, which are written onto the disk as soon as they are

generated. The details can found in [14, 15]. In the temporal case, the parsers also pass the URI and the start date

for each parsed document version to the indexers. During the indexing stage, a special thread pulls the parsed

results from the buffer as soon as they are available, and builds the URI hash table (one entry per document) and

the VID table (one entry per document version), after which a number of indexers jointly update (or construct

during the first time window) the dictionary and generate the corresponding postings lists. The extra workload to

build the URI hash table and VID table is trivial compared to the work performed by the parallel indexers to build

the dictionary and postings lists.

 15

As in the dictionary case, the URI hash table and the VID table remain in main memory until the entire data

collection has been processed; however the two temporal tables are checked periodically such that only a small

portion of the VID entries are kept in main memory as described in Section 4.1; the postings lists are first kept in

memory and then written into a disk as temporary files before the memory gets full. When the current time window

is closed, a number of parallel temporal mergers read these temporary files and the postings lists inherited from

previous time window from the disk, and generate the postings lists for both current time window and those that are

sill alive during the next time window. The number of parsers, indexers and temporal mergers are determined

depending on the physical resources available as will be illustrated in Section 6.1. The overall scheme is shown in

Figure 5.1.

Figure 5.1. Overall Data Flow on a Single Node

5.1.2 Highlights of the Parsing and Indexing Stages

A key element of our pipelined strategy introduced in [14, 15] is a hybrid data structure to represent the

dictionary, which consists of a trie at the top level and a B-Tree attached to each of the leaves of the trie as shown

in Figure 5.2. Essentially, terms are mapped into different groups, called trie-collections, each of which is then

represented by a B-tree. This data structure is critical to our parallel algorithms since each trie-collection can now

be processed independently.

Figure 5.2. A Hybrid Data Structure of Dictionary

 16

Figure 5.3. Data Flow of One Parser Thread

During the parsing stage, we use a traditional parsing algorithm that ends with a regrouping step as illustrated in

Figure 5.3. This step rearranges the terms with the same trie index so that they are located contiguously (and the

prefix of each term captured by the trie index is removed). The overhead of this step is relatively small and this

regrouping is needed to partition the parsed data for the indexing stage. The assigned VIDs are local within each

parser. A global VID offset will be calculated by the indexer; and the global VID will be obtained by adding the

local VID and the global offset. In the temporal case, parsers also pass the URI, document length and start date of

each VID to the indexers.

Figure 5.4. Timing Sequence of Parallel Parsers

To prevent parsers from trying to read from the same disk simultaneously, a scheduler is used to organize the

reads of the different parsers, one at a time. On the other hand, an output buffer is allocated to each parser to store

the corresponding parsed results. The indexers in the next stage will read from these buffers in order, that is,

(buffer of Parser 0, buffer of Parser 1, …, buffer of Parser M-1, buffer of Parser 0, …). Such read sequence is

enforced to ensure that documents will be indexed in the same order they are read, and hence the postings lists are

intrinsically in sorted order of assigned VIDs and the start times of the document versions. A parser has to also

wait until buffer is cleared to start the parsing of the next block of documents to ensure that it has the space to

write the parsed results. When these constraints are applied, the timing sequence of parallel parsers looks like the

example shown in Figure 5.4.

Once parsed results are available in a buffer, the corresponding URI hash table and VID table are generated. The

work load here is trivial compared to the work to be performed by the indexers since for one document version

 17

the above two tables are updated once while each term of each document version has to be handled separately by

the indexers.

Once the URI hash table and the VDI table of the corresponding parsed stream have been constructed, an indexer

will construct all the B-trees and the postings lists corresponding to each input term in the stream. To ensure load

balancing, a CPU thread will take care of the B-trees of several trie collections assigned such that each indexer

processes more or less the same number of tokens.

5.1.3 Temporal Merging Stage

The temporal merging stage is invoked only at each time window boundary, where the current time window closes

and a new one starts.

Figure 5.5. Data Flow in the Temporal Merging Stage

The input data to the temporal mergers for the time window TWk consists of a temporary file passed from time

window TWk-1 and several temporary files generated during this time window. A temporal merger processes one

term at a time such that the postings list of this single term can fit in memory. It starts by reading out all the partial

postings lists from the temporary files. These postings lists are then combined into the complete postings list of this

term in TWk, which contains all postings that are alive within time [Tj, Tj+S). From this complete list, we can get the

needed global statistics at each elementary time step for this term. For example, the document frequency of this

term at Tj+2 can be obtained by counting the number of postings that are alive at Tj+2. The postings lists of all terms

are written onto the disk. In our current implementation, we generate one value of average document length for

each elementary time step and the document frequency for each term and each elementary time step. The cost of

accessing the document frequency of each term was already reported in Section 4.3. However in the case when we

have hundreds of thousands of elementary time steps, we can approximate the document frequency of each term at

a time step by the average document frequency of the term over the time window. As reported in [12], this

 18

approximation does not significantly change the relative rankings of document versions for a random sequence of

queries, and results substantial space savings in the case of a large number of elementary time steps.

In the next step, we go through the postings of this term to find out all postings which are still alive at the end of

TWk, that is, at the elementary time step Tj+S. The temporary file containing such postings is therefore passed to the

next time window TWk+1.

Even though temporal mergers are reading and writing multiple files at the same time, each file is accessed

contiguously. The reason for this is that when the postings list of Term i is finished, the temporal merger moves

onto Term i+1 whose file locations are in contiguous locations of Term i for both the input and the output files. To

exploit this property, we use buffered file read and write (a typical buffer size is 10MB) to alleviate disk read/write

conflicts.

When the entire data collection is ingested and the last time window is completed using an appropriate number of

temporal mergers, we end up with two types of postings lists:

 postings lists for each time window: postings lists capturing all the document versions that are alive in this
time window, which are enough to serve any query that falls within this time window.

 postings lists of live document versions: the temporary file of postings lists containing live postings, as the
byproduct from the last time window, provides a useful way to search for the most up to date version of a
document if it still exists. Typically, this is the type of postings lists generated by today’s search engines –
postings lists referring to current live web pages.

To carry out incremental updating, we can easily use the same algorithm incorporating the postings lists of still

alive VIDs at the end of the new time window.

5.2 Parallel Algorithm on a Cluster

We now extend our single node strategy to a cluster of multicore processors in a similar vein as in [15]. There are

several possible strategies for such an extension, all of which assume that document versions are distributed on

the disks of the various nodes of the cluster and hence the parsing stage can be carried out by all the nodes

independently.

 Partition-by-Time-Window. Each node fetches the input files corresponding to one time window, builds the
local dictionaries and postings lists for this time window. The merging phase is not needed for temporal
queries because we only search within one time window for a query.

 Partition-by-URI. At the end of each parsing stage, we partition documents among indexers based on their
URIs following the single node algorithm such that each node only processes a portion of the document
collection, after which the local dictionaries, local URI hash table, local VID table, and local postings lists
from all the nodes are merged. This method follows the standard divide-and-conquer strategy and hence its
effectiveness depends on the merging phase.

 Partition-by-Trie-Collection. This strategy includes a sampling preprocessing step that creates a persistent
mapping between the trie collection indexes and the IDs of the indexers, which is used to distribute the parsed
streams to the nodes. On the other hand, temporal information for building the URI hash table and the VID
table is distributed to indexers by hashing on the URIs and each indexer builds local URI hash table and local
VID table on its assigned portion of URIs. A synchronization of VID tables is needed to obtain the global VID
table when a time window is closed.

It is clear that the first strategy will achieve excellent performance during the processing of each batch of a time

window. However the temporal mergers can’t finalize the postings lists of the current time window until they

 19

receive the still alive postings from the previous time window. As a result, the lower bound of the running time is

∑(time in the merging stage in each time window) which makes this strategy ineffective.

The bottleneck of the second strategy lies in the global merging stage. Such merging is required since for a given

query term we have to search the same term in all the local dictionaries and the local postings lists to find all

matching results. Moreover, if newer documents are ingested afterwards, we have to carry out the complete

merging process again.

The last approach is extended from the partition-and-index approach described in [15] with the advantage of a

coherent, global dictionary and the global VIDs stored in the postings lists on all nodes. The global synchronization

of VID tables will cause some overhead but it is well hidden by our pipeline design. As a result, we choose this

strategy to implement.

Figure 5.6. Data Flow of Partition-by-Trie-Collection-and-URI Strategy

The data flow of the third approach is illustrated in Figure 5.6. The indexers and temporal mergers still share the

same disks and hence the temporary files in Figure 5.5 will be written and read locally; however, at time window

boundaries, the temporal mergers on different nodes have to exchange their local VID tables to generate the global

VID table.

Our algorithm on the cluster distributes the task of building the URI hash table and the VID table evenly among the

nodes by hashing on the URIs. This is applicable because only VIDs crawled from the same URI will have

temporal relations. However, when a time window closes, the distributed VID tables on all nodes are synchronized

to reflect the complete and global view of all VIDs. This is a required step because the postings lists generated by

the indexers on different nodes are not partitioned by URIs. Consequently, the postings handled by a temporal

merger on one node may contain any VIDs residing on an arbitrarily different node, not necessarily restricted to the

VIDs assigned to this node by the URI hashing function. On the other hand, the local URI hash tables are not

synchronized since they are not used in the temporal merging stage due to the fact that they contain neither the start

time nor the end time of VIDs which are required by temporal mergers to check if a posting is still alive.

An alternative implementation is to let all nodes build their own copies of the global URI hash table and VID table

from the parsed results. Such an approach eliminates synchronization by duplicating computation at every node. If

the average time to build these two temporal tables is T1 and the average indexing time is T2 for each batch, then

the processing time of the indexers with P nodes becomes T1 + T2/P. When P is over eight in our experiments, T1

will be dominating and hence the indexing speed does not really improve with larger P. In our algorithm, the

 20

processing time is (T1 + T2)/P, which is clearly scalable. The temporal mergers are responsible for this

synchronization and hence parsers and indexers will not be stalled due to this communication operation.

Putting all the pieces together, we get the overall data flow shown in Figure 5.6 for a cluster of multicore

processors. Similar to the single node case, we use synchronous communication to enforce the sequence of

messages processed by indexers, that is, each node sequentially receives messages from node 1 through node P to

guarantee the order of VIDs in the postings lists. Indexers on different nodes start indexing once the parsed results

are received via the interconnect and they don’t necessarily communicate with other indexers; on the other hand, all

the temporal mergers will begin at the same time once the VID table synchronization is done.

6. EXPERIMENTAL EVALUATION OF OUR PARALLEL ALGORITHMS

The performance of our single multicore node is evaluated using the Congressional dataset, where a node consists

of two Intel Xeon X5560 Quad-core CPUs with 24 GB of memory and 210 GB disk. The cluster algorithm is tested

on a cluster of 32 of such nodes that are interconnected by a 10Gb/s InfiniBand.

In what follows, we start by exploring the optimal empirical values of the numbers of parsers, indexers and

temporal mergers for the single node algorithm (described in Section 5.1). We then show that our cluster algorithm

is scalable relative to the optimized single node algorithm, up to the largest number of available nodes, as well as

the performance of our single node algorithm on the two document collections in Table 4.1.

6.1 Number of Parallel Parsers, Indexers and Temporal Mergers on a Single Node

For simplicity we use the triplet <M, N, L> to represent the combination of M parsers, N indexers and L temporal

mergers in the temporal case and the tuple <M, N> for the combination of M parsers and N indexers in the non-

temporal case. We conduct tests based on the following rules:

1) the total number of parsers and indexers is at most eight beyond which the parsers and indexers will compete for

the available cores which will hurt the overall performance;

2) the tasks of temporal mergers are mainly disk I/O bound, and hence we let indexers and temporal mergers share

the same cores should the total number of running threads exceeds eight;

3) As shown in [14, 15], two indexers are fast enough to keep up with up to six parsers but using a single indexer

will constitute a major bottleneck, and hence we fix the number of indexers to two;

4) During the indexing stage, each indexer generates its own portion of postings lists and hence it seems to be

impossible to effectively assign multiple temporal mergers to process a single indexer’s output; therefore, the

postings lists from a single indexer will only be processed by a single temporal merger, which means L must be less

than or equal to N.

Under these rules, we consider the following combinations of the numbers of parsers, indexers and temporal

mergers: <6, 2, 2>, <6, 2, 1>, <5, 2, 2>, <5, 2, 1>, <4, 2, 2>. The Congressional dataset is used and three time

windows are created under the Even-Size strategy. To show the extra cost from temporal processing, the

throughput of the non-temporal case using <6, 2> is also included, where we use the algorithms in [15] and treat

every document version in the collection as a new and independent document.

Figure 6.1 illustrates the resulting throughputs of the various combinations. It is clear that the combination <6, 2,

2> of our temporal algorithm achieves the best throughput reaching to over 60% of the throughput achieved by the

best non-temporal algorithm that uses six parsers and two indexers. Therefore our single multicore node algorithm

 21

to generate the inverted files in the temporal case incur a very reasonable overhead in spite of the fact that it has to

deal with the extra temporal dimension.

Figure 6.1. Throughput on a Single Node

We now take a closer look at in the performance of each stage of the pipeline as illustrated in Figure 6.2. In the

non-temporal case and as expected, the execution times of the parsing and indexing stages are the best in all the

three time windows, followed by the temporal case using the combination <6, 2, 1>, which is due to the extra work

of building two temporal tables and the impact of the new temporal merging thread. The parsing and indexing

speed is slowest when using the combination <6, 2, 2>; however, the overall throughput is higher than using the

combination <6, 2, 1> because of the much slower temporal merging stage.

Figure 6.2. Detailed Timeline in the Pipeline with Three Time Windows

6.2 Throughput on the Cluster

We now evaluate the performance and the scalability of our cluster algorithm relative to the number of nodes. The

speedup is calculated relative to our best algorithm on a single node, and hence the speedup of our cluster

algorithm on a single node is less than 1 due to the cluster algorithm overhead such as the overhead incurred by the

MPI communication operations. We note that the optimal combination of the numbers of parsers, indexers and

temporal mergers is not necessarily <6, 2, 2> in all scenarios. For example the combination of <5, 2, 2> yields a

 22

throughput that is 6% better than the combination of <6, 2, 2> on 32 nodes. The optimal choice also changes with

different time window numbers and splitting methods, but in general the result from <6, 2, 2> is very close to the

best possible (within 10%). Our main focus is to study the extra cost of temporal processing and to carry out a

direct comparison with the non-temporal case (where <6, 2> is applied). Again, we use the Congressional dataset

with three time windows under the Even-Size strategy.

6.2.1 Scalability over the Number of Nodes

From Table 4.7 and Figure 6.3, we consider the throughput of our temporal and non-temporal algorithms as a

function of the number of nodes. Both algorithms scale almost linearly with the number of nodes. The speedup

values in the temporal and non-temporal cases are relatively close and the ratio is around 0.70. As we have shown

in [15], our non-temporal algorithm achieves a very good load balancing, and given the constant ratio with our

temporal algorithm, we can conclude that the latter also achieves good load balancing.

Table 4.7. Throughput Over the Number of Nodes

Number

of Nodes

Temporal (6, 2, 2) Non-Temporal (6, 2)
Throughput

Ratio Throughput

(MB/s)
Speedup

Throughput

(MB/s)
Speedup

1 172 0.95 249 0.94 0.69

2 312 1.72 480 1.81 0.65

4 619 3.41 935 3.54 0.66

8 1226 6.76 1717 6.50 0.71

16 2382 13.14 3176 12.02 0.75

32 3796 20.93 5401 20.44 0.70

Figure 6.3. Scalability over the Number of Nodes

 23

6.2.2 Detailed Running Time of the Pipeline

Figure 6.4 illustrates the running time for each time window. Similar to Figure 6.2, it takes longer to parse and

index the document versions whenever indexers and temporal mergers share the same physical CPU cores.

Compared with the running time on a single node, the VID table synchronization time is also significantly larger

because of the all-to-all communication between the 32 nodes. Another interesting fact is that the temporal merging

time, which is over 40 times faster than the one on a single node. This is due to the fact that, with P nodes, the sizes

of input and output files in Figure 5.5 are only 1/P of the corresponding files on a single node, in which case the

file access caches can significantly impact the file reading and writing throughput. In Table 4.8, we list the speedup

over the number of nodes by summing up the total running time spent in the temporal merging stage. It is obvious

that the super-scalability doesn’t show up until the number of nodes reaches eight in which case the size of a

temporary file in Figure 5.5 is as low as about tens of MBs, which is close to the 10MB memory buffer size we

mentioned in Section 5.1.2 for each temporary file.

Figure 6.4. Detailed Timeline on the Cluster

Table 4.8. Speedup in the Merging Stage

Number of Nodes
Speedup of Temporal

Merging Stage

1 1.00

2 1.63

4 3.75

8 9.41

16 20.29

32 43.76

6.2.3 Latency of the Pipeline

Besides the throughput, another important factor for incremental updating is the latency between the time a

document version is inserted into the pipeline and the time that this document version is included in the postings

lists on disks and hence is available for searching. We tested the maximum latency relative to different number of

time windows under the Even-Size strategy. Since in our current strategies, document versions are included into

the final and permanent postings lists at the end of each time window, it is expected that the latency decreases as

the number of time windows increases (and their sizes decrease) as shown in Figure 6.5. However, we also need

to process the postings lists passed from previous window, which costs the majority of the running time with a

 24

large number of time windows and prevents us from further improving the latency. Overall, with 32 nodes the

latency is well controlled in less than 4 minutes.

Figure 6.5. Maximum Latency Relative to the Number of Time Windows

6.2.4 Throughput over the Number of Time Windows

In this section we test the overall running time and throughput with different numbers of time windows on our

cluster with 32 nodes. With only a single time window, the process of temporal merging won’t start until all

parsing and indexing tasks are finished and hence the temporal merging time is not hidden by the parsing and

indexing time at all. When the number of time windows increases, the time cost by the last batch of temporal

merging (the right most temporal merging time in Figure 6.4) is also reduced, that’s why the running time

decreases when the number of time window grows from 1 to 9. Beyond that, VIDs that are alive across time

window boundaries are more likely to be duplicated in the postings lists of several time windows, which can be

verified by the drastically inflated size of output postings lists. Writing such duplicates onto disks consumes a

significant amount of CPU cycles and as a result the overall running time climbs back to even higher values when

there are 18 or 36 time windows.

Table 4.9. Throughput over the Number of Time Windows

Number of

Time Window

Running Time

(second)

Throughput

(MB/s)

Compressed Output

PL Size (GB)

1 538 3185 33.7

3 451 3796 42.0

9 408 4196 88.6

18 550 3110 136.6

36 612 2797 248.1

0

50

100

150

200

250

300

1 3 9 18 36

M
ax

im
u

m
 L

at
e

n
cy

 (
se

co
n

d
)

Number of Time Windows

 25

6.2.5 Performance of our Algorithm on Different Document Collections

We show in Table 4.10 the overall throughput of our algorithm on our two document collections with the

parameter combination of <6, 2, 2>. For the Wikipedia01-07 collection, the HTML tags were removed, and the

remainder was just pure text. As we can see from Table 4.1, the uncompressed size is only 1/21th of the

Congressional collection, yet the number of tokens is about a fourth compared to the one of the Congressional

collection. Hence the 50MB/s throughput achieved on Wikipedia01-07 actually amounts to a very high processing

speed given the large numbers of tokens. Since the size of Wikipedia01-07 is too small, we could not get any

meaningful speedup beyond four nodes and hence those results are not included in Table 4.10. The scalability from

single to four nodes is as good as the one achieved on the Congressional collection. We believe that, should we

have much larger Wikipedia document version collection, similar speedups as shown in Table 4.7 can be achieved

for 8 to 32 nodes.

Table 4.10. Throughput on Different Document Version Collections

Throughput (MB/s)

Congressional Wikipedia 01-07

Temporal Non-Temporal Temporal Non-Temporal

Single Node 181.35 264.26 51.33 78.29

Four Nodes 618.54 935.08 192.12 242.05

7. CONCLUSION

In this work, we introduced a new approach to build the inverted files and auxiliary indexing structures to enable

temporally anchored text-based search of a collection of time-evolving documents. We presented effective

strategies to build the inverted files and the indexing structures, both on a single multicore processor and a cluster

of such processors, and illustrated the performance of our algorithms on two significant collections using several

parameters such as search time, space, and construction time. In particular, we showed that our overall

throughputs on the two collections reach around 70% of the fastest known algorithms when the collections are

processed without taking into consideration the temporal dimension. Moreover, our overall strategy can naturally

handle additional documents incrementally without having to completely rebuild the inverted files from scratch.

ACKNOWLEDGEMENT

We would like to thank the Library of Congress and the Internet Archive for making the congressional dataset

available to us. We would also like to thank Sangchul Song who developed the version of Wikipedia04-09 dataset

used in our experimental tests. This research was partially supported by the NVIDIA Research Excellence Center

at the University of Maryland and the NSF Research Infrastructure award, grant number CNS-0403313.

REFERENCES

[1] L. Mearian, “The Internet Archive's Wayback Machine gets a new data center,” Computer-world.com, Mar.

2009,

http://www.computerworld.com/s/article/9130499/The_Internet_Archive_s_Wayback_Machine_gets_a_new

_data_center, Accessed: August 15, 2012.

 26

[2] “Minerva: Library of Congress Web Archives” Available: http://lcweb2.loc.gov/diglib/lcwa/html/lcwa-

home.html, Accessed: Octorber. 3, 2011.

[3] “UK Web Archiving Consortium” Available: http://www.webarchive.org.uk, Accessed: Octorber. 3, 2011.

[4] “Pandora: Australia's Web Archive” Available: http://pandora.nla.gov.au, Accessed: Octorber. 3, 2011.

[5] “Web-at-Risk,” Dec. 2008 Available: https://wiki.cdlib.org/WebAtRisk/tiki-index.php, Accessed: Octorber. 3,

2011.

[6] http://www.archive.org/web/petabox.php, Accessed: April. 30, 2012.

[7] K. Nørvåg, “V2: a database approach to temporal document management,” Proceedings of the seventh

Database Engineering and Applications Symposium (IDEAS 2003), Hong Kong, China: IEEE Computer

Society, 2003, pp. 212-221.

[8] K. Nørvåg, “Space-Efficient Support for Temporal Text Indexing in a Document Archive Context,”

Proceedings of the seventh European Conference on Digital Libraries, Trondheim, Norway: Springer

Verlag, 2003, pp. 511-522.

[9] K. Nørvåg and A.O. Nybø, “DyST: Dynamic and Scalable Temporal Text Indexing,” Proceedings of the

Thirteenth International Symposium on Temporal Representation and Reasoning, IEEE Computer Society,

2006, pp. 204-211.

[10] K. Berberich, S. Bedathur, T. Neumann, and G. Weikum, “A time machine for text search,” Proceedings of

the 30th annual international ACM SIGIR conference on Research and development in information retrieval,

Amsterdam, The Netherlands: 2007.

[11] A. Anand, S. Bedathur, K. Berberich, and R. Schenkel, “Temporal Index Sharding for Space-Time Efficiency in

Archive Search”, Proceedings of the 34th international ACM SIGIR conference on Research and development

in Information Retrieval, New York, USA, 2011, pp. 545-554.

[12] S. Song and J. JaJa, “Effective Strategies for Temporally Anchored Information Retrieval”, UMIACS

Technical Report.

[13] S. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford, “Okapi at TREC-3,” Proceedings of

the Third Text REtrieval Conference (TREC 1994), Gaithersburg, USA, November 1994.

[14] Z. Wei and J. JaJa, “An Optimized High-Throughput Strategy for Constructing Inverted Files”, to be

published on IEEE Transactions on Parallel and Distributed Systems.

[15] Z. Wei and J. JaJa, “Constructing Inverted Files on a Cluster of Multicore Processors Near Peak I/O

ThroughputA Fast Algorithm for Constructing Inverted Files on Heterogeneous Platforms”, Journal of

Parallel and Distributed Computing 72 (2012), pp. 728-738.

http://www.archive.org/web/petabox.php

