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Abstract—Spectral clustering is one of the most popular
graph clustering algorithms, which achieves the best perfor-
mance for many scientific and engineering applications. How-
ever, existing implementations in commonly used software plat-
forms such as Matlab and Python do not scale well for many of
the emerging Big Data applications. In this paper, we present
a fast implementation of the spectral clustering algorithm
on a CPU-GPU heterogeneous platform. Our implementation
takes advantage of the computational power of the multi-core
CPU and the massive multithreading and SIMD capabilities
of GPUs. Given the input as data points in high dimensional
space, we propose a parallel scheme to build a sparse similarity
graph represented in a standard sparse representation format.
Then we compute the smallest k eigenvectors of the Laplacian
matrix by utilizing the reverse communication interfaces of
ARPACK software and cuSPARSE library, where k is typically
very large. Moreover, we implement a very fast parallelized k-
means algorithm on GPUs. Our implementation is shown to
be significantly faster compared to the best known Matlab
and Python implementations for each step. In addition, our
algorithm scales to problems with a very large number of
clusters.

Keywords-CPU-GPU platform; spectral clustering; sparse
similarity graph;reverse communication interface; k-means
clustering

I. INTRODUCTION

Spectral clustering algorithm has recently gained popular-
ity in handling many graph clustering tasks such as those
reported in [1, 2, 3]. Compared to traditional clustering
algorithms, such as k-means clustering and hierarchical
clustering, spectral clustering has a very well formulated
mathematical framework and is able to discover non-convex
regions which may not be detected by other clustering algo-
rithms. Moreover, spectral clustering can be conveniently
implemented by linear algebra operations using popular
scientific software environments such as Matlab and Python.
Most of the available software implementations are built
upon CPU-optimized Basic Linear Algebra Subprograms
(BLAS), usually accelerated using multi-thread program-
ming. However, such implementations scale poorly as the
problem size or the number of clusters grow very large.
Recent results show that GPU accelerated BLAS signifi-
cantly outperforms multi-threaded BLAS libraries such as
the Intel MKL package, LAPACK and Goto BLAS [4, 5].

Moreover, hybrid computing environments, which collabora-
tively combine the computational advantages of GPUs and
CPUs, further boost the overall performance and are able
to achieve very high performance on problems whose sizes
grow up to the capacity of CPU memory [6, 7, 8, 9, 10,
11]. In this paper, we present a hybrid implementation of the
spectral clustering algorithm which significantly outperforms
the known implementations, most of which are purely based
on multi-core CPUs.

There have been reported efforts on parallelizing the
spectral clustering algorithm. Zheng et al. [12] presented
both CUDA and OpenMP implementations of spectral clus-
tering. However, the implementation was targeted for a
much smaller data size than the work in this paper, and
moreover, their implementation achieve a relatively limited
speedup. Matam et al. [13] implemented a special case of
spectral clustering, namely the spectral bisection algorithm,
which was shown to achieve high speed-ups compared to
Matlab and Intel MKL implementations. Chen et al. [14,
15] implemented the spectral clustering algorithm on a
distributed environment using Message Passing Interface
(MPI), which is targeted for problems whose sizes that could
not fit in the memory of a single machine. Tsironis and Sozio
[16] proposed an implementation of spectral clustering based
on MapReduce. Both implementations were targeted for
clusters, and involve frequent data communications which
will clearly constrain the overall performance.

In this paper, we present a hybrid implementation of
spectral clustering on a CPU-GPU heterogeneous platform
which significantly outperforms all the best implementations
we are aware of, which are based on existing parallel
platforms. We highlight the main contributions of our paper
as follows:
• Our algorithm is the first work to comprehensively

explore the hybrid implementation of spectral clustering
algorithm on CPU-GPU platforms.

• Our implementation makes use of sparse representation
of the corresponding graphs and can handle extremely
large input sizes and generate a very large number of
clusters.

• The hybrid implementation is highly efficient and is
shown to make a very good use of available resources.



• Our experimental results show superior performance
relative to the common scientific software implementa-
tions on multicore CPUs.

The rest of the paper is organized as follows. Section
II gives an overview of the spectral clustering algorithm,
while describing the important steps in some detail. Section
III describes the operating environment and the necessary
software dependencies. Section IV provides a description
of our parallel implementation, while Section V evaluates
the performance of our algorithm with a comparison with
Matlab and Python implementations on both synthetic and
real-world datasets.

II. OVERVIEW OF SPECTRAL CLUSTERING ALGORITHM

Spectral clustering was first introduced in 1973 to study
the graph partition problem [17]. Later, the algorithm was
extended in [18, 19], and generalized to a wide range
of applications, such as computational biology [20, 21],
medical image analysis [2, 3], social networks [22, 23]
and information retrieval [24, 25]. A standard procedure of
the spectral clustering algorithm to compute k clusters is
described next [26],
• Step 1: Given a set of data points x1, x2, ..., xn ∈ Rd

and some similarity measure s(xi, xj), construct a
sparse similarity matrix W that captures the significant
similarities between the pairs of points.

• Step 2: Compute the normalized graph Laplacian ma-
trix as Ln = D−1L where L is the unnormalized graph
Laplacian matrix defined as L = D−W and D is the
diagonal matrix with each element Di,i =

∑n
j=1Wi,j .

• Step 3: Compute the k eigenvectors of the normalized
graph Laplacian matrix Ln corresponding to the small-
est k nonzero eigenvalues.

• Step 4: Apply the k-means clustering algorithm on
the rows of the matrix whose columns are the k
eigenvectors to obtain the final clusters.

Given the similarity graph defined by the similarity matrix
W , the basic idea behind spectral clustering is to partition
the graph into k partitions such that some measure of the cut
between the partitions is minimized. The traditional graph
cut is defined as follows:

Cut(A1, A2, ..., Ak) =
1

2

k∑
i=1

W (Ai, Āi); (1)

W (A, Ā) :=
∑

i∈A,j∈Ā

wij (2)

To ensure that the each partition represents a meaningful
cluster of reasonable size, two alternative cut measures are
often used, namely RatioCut and normalized cut Ncut. Note
that we use below |Ai| as the number of nodes in A and
vol(A) as the sum of the degrees of all the nodes in A.

Table I. CPU and GPU specifics

CPU Model Intel Xeon E5-2690
CPU Cores 8
DRAM Size 128GB
GPU Model Tesla K20c

Device Memory Size 5GB GDDR5
SMs and SPs 13 and 192

Compute Capability 3.5
CUDA SDK 7.5

PCIe Bus PCIe x16 Gen2

RatioCut(A1, A2, Ak) =
1

2

k∑
i=1

W (Ai, Āi)

|Ai|
; (3)

Ncut(A1, A2, Ak) =
1

2

k∑
i=1

W (Ai, Āi)

vol(Ai)
; (4)

In our implementation, we focus on the problem of minimiz-
ing the Ncut which has an equivalent algebraic formulation
as defined next.

min
H

trace(H ′LH) subject to H ′DH = I (5)

That is, we need to determine a matrix H ∈ Rn×k whose
columns are indicator vectors, which minimizes the objective
function introduced above.

Since this problem is NP-hard, we relax the discrete
constraints on H are removed, thereby allowing H to be any
matrix in Rn×k. Note that there is no theoretical guarantee
on the quality of the solution of the relaxed problem com-
pared to the exact solution of the discrete version. It turns out
that the relaxed problem is a well-known trace minimization
problem, which can be exactly solved by taking H as the
eigenvectors with the smallest k eigenvalues of the matrix
Ln = D−1L or equivalently the k generalized eigenvectors
corresponding to the smallest k eigenvalues of Lx = λDx.
The k-means clustering is then applied on the rows of H to
obtain the desired clustering.

The algorithm described above begins with a set of d-
dimensional data points and builds the similarity graph
explicitly from the pair-wise similarity metric. The similarity
graph is usually stored in a sparse matrix representation,
which often reduces the memory requirement and compu-
tational cost to linear instead of quadratic. For the general
graph clustering whose input is specified as a graph, our
spectral clustering algorithm starts directly in Step 2. Oth-
erwise, we build our sparse graph representation from the
given set of data points.

III. ENVIRONMENT SETUP

A. The Heterogeneous System

The CPU-GPU heterogeneous system used in our imple-
mentation is specified in Table I.



The CPU and the GPU communicate through the PCIe
bus whose theoretical peak bandwidth is 8 GB/s. The cost
of data communication can be quite significant for large-
scale problems. To achieve the best overall performance,
our implementation leverages the GPU to compute the most
computationally expensive part while minimizing the data
transfer between the host and the device.

B. CUDA Platform
CUDA is a general-purpose multithreaded programming

model that leverages the large number of GPU cores to solve
complex data parallel problems. The CUDA programming
model assumes a heterogeneous system with a host CPU
and several GPUs as co-processors. Each GPU has an
array of Streaming Multiprocessors (SM), each of which
has a number of Streaming Processors (SP) that execute
instructions concurrently. The parallel computation on GPU
is invoked by calling customized kernel functions using
thousands of threads. The kernel function is executed by
blocks of threads independently. Each block of threads can
be scheduled on any Streaming Multiprocessors (SP) as
shown in Figure 1. The kernel function takes as parameters
the number of blocks and the number of threads within a
block.

In addition, NVIDIA provides efficient BLAS libraries for
both sparse1 and dense2 matrix computations. Our imple-
mentation relies on the Thrust library, which resembles the
C++ Standard Template Library (STL) that provides efficient
operations such as sort, transform, which greatly improves
productivity.

C. ARPACK Software
ARPACK is a software package designed to solve large-

scale eigenvalue problems [27]. ARPACK is reliable and
achieves high accuracy, and is widely used in modern
scientific software environments. It contains highly opti-
mized Fortran subroutines that are able to solve symmetric,
non-symmetric and generalized eigenproblems. ARPACK is
based on the Implicitly Restarted Arnoldi Method (IRAM)
with non-trivial numerical optimization techniques [28, 29].
In our implementation, we adopt ARPACK++ 3 that pro-
vides C++ interfaces to the original ARPACK Fortran
packages and utilizes efficient matrix solver libraries such
as LAPACK, SuperLU. The eigenvalue problem is effi-
ciently solved by collaboratively combining the interfaces
of ARPACK++ and cuSPARSE library.

D. OpenBLAS
OpenBLAS4 is an open-source CPU-based BLAS library

utilized by ARPACK++. It supports multi-threaded accelera-
tion through pthread programming or OpenMP by specifying

1http://docs.nvidia.com/cuda/cusparse/
2http://docs.nvidia.com/cuda/cublas/
3http://reuter.mit.edu/software/arpackpatch/
4http://www.openblas.net/

Figure 1: CUDA Program Model

corresponding environment variables. OpenBLAS is a highly
optimized BLAS library developed based on GotoBLAS2,
which has been shown to surpass other CPU-based BLAS
libraries [4].

IV. IMPLEMENTATION

A. Data Preprocessing

Given the d-dimensional data points, the preprocessing
step constructs the similarity matrix from the data points.
The clustering problem is reformulated as a graph clustering
where the graph is represented by the similarity matrix.

As mentioned before, the similarity matrix is usually
constructed to be sparse, which reduces the memory require-
ment and enables high computational efficiency. The sparsity
patterns of the similarity matrices are highly dependent on
the specific application. The following are several common
ways to construct a sparse similarity matrix [26].

• λ-threshold graph: The similarity graph is constructed
where data points are connected if their similarity
measure is above the threshold λ.

• ε-distance graph: The similarity matrix is construct by
only connecting data points that are within a spatial
distance ε.

• k-nearest-neighbor graph: The similarity graph is con-
structed where two data points xi and xj are connected
only if either xi is among the k most similar data points
of xj , or xj is among the k most similar data points of
xi. Note that the parameter k is unrelated to the number
k of clusters used in the next section.

The notion of the similarity measure between data points
also varies depending on the application. Typical measures
are the following.

• Cosine Similarity Measure

CosineDist(xi, xj) =
〈xi, xj〉
‖xi‖2‖xj‖2

(6)



Algorithm 1 Construction of Sparse Similarity Matrix
1. Transfer the input data X and edge lists E from CPU to GPU.
2. Initialize n-length vectors Xaverage and Xnorm on GPU.
3. Initialize nnz-length vector val on GPU.
4. Execute kernel function compute_average where each thread i
computes Xaverage(i) =

1
d

∑d
j=1 Xij

5. Execute kernel function update_data where each thread i
updates one row of data Xij = Xij − Xaverage(i) and compute

Xnorm(i) =
√∑d

j=1 X
2
ij

6. Execute kernel function compute_similarity where each
thread i computes the similarity between the ith pair of data points
in E.
7. The edge list and the vector val form the sparse graph represented
in the Coordinate Format (COO) format.

• Cross Correlation

CrossCorr(xi, xj) =
〈xi − x̄i, xj − x̄j〉
‖xi − x̄i‖2‖xj − x̄j‖2

(7)

• Exponential decay function

ExpDecay(xi, xj) = e
‖xi−xj‖2

2σ2 (8)

Although the sparse patterns and similarity measures are
different depending on the application, the general construc-
tion of the similarity matrix can be accelerated under the
CUDA programming model regardless of the preprocessing
used. Here we provide a parallel implementation for a
specific sparsity pattern and similarity measure.

We consider the input data as a matrix X ∈ Rn×d where
n is the number of data points and d is the dimension of
each data point. The goal is to construct a sparse matrix
representation of the similarity graph using the ε-distance
graph structure and cross correlation as the similarity mea-
sure. We assume the neighborhood information is given by a
list E ∈ Rnnz×2, which contains all pairs of indices of data
points that are within ε-distance. The number nnz of such
pairs is the number of edges in the graph. The procedure
for constructing the sparse similarity matrix represented in
Coordinate Format (COO) format is described in Algorithm
1.

The above procedure is highly data parallel and easy
to implement under the CUDA programming model. In
general, there are two sparse matrix representations that we
use in our work.
• Coordinate Format (COO): this format is the simplest

sparse matrix representation. Essentially, COO uses
tuples (i, j, wij) to represent all the non-zero entries.
This can be done through three separate nnz-length
arrays that respectively store the row indices, column
indices, and the corresponding non-zero matrix values.

• Compressed Sparse Row Format (CSR): this consists
of three arrays, one containing the non-zero values,
the second containing the column indices of the cor-
responding non-zero values, and the third contains the
prefix sums of the number of nonzero entries of the
rows.

Algorithm 2 Parallel Computation of D−1W
1. Initialize a n-length vector x with 1.0 for all elements.
2. Compute the vector y = Wx where each element yi = dii by
calling cusparseDcsrmv in cuSPARSE library
3. Execute the kernel function ScaleElements where each thread i
processes one item in COO format < r, c, val > and scales the element
value by the inverse of yi.
4. Compress the row indices through the cuSPARSE interface
cusparseXcoo2csr.
5. The compressed row indices, the column indices and the updated
element value form the CSR representation of D−1W

Other sparse formats such as Compressed Sparse Col-
umn Format (CSC), Block Compressed Sparse Row Format
(BSR) are also supported in our implementation.

B. Parallel Eigensolvers

Given the similarity graph W represented in some sparse
format and the desired number of clusters k, this step
computes the k eigenvectors corresponding to the smallest k
eigenvalues of normalized Laplacian Ln = I−D−1W where
W is the sparse matrix and D is the diagonal matrix with
each element Di,i =

∑n
j=1Wi,j . We assume that Di,i are all

positive, otherwise the isolated nodes can be removed from
the graph. The eigenvectors corresponding to the smallest
k eigenvalues of the normalized Laplacian are exactly the
eigenvectors corresponding to the largest k eigenvalues of
D−1W . Since computing the largest eigenvalues results in
better numerical stability and convergent behavior, we focus
our attention on computing the eigenvectors corresponding
to the largest k eigenvalues of D−1W .

The sparse matrix multiplication D−1W can easily be
computed as follows:

d−1
11

d−1
22

...
d−1
nn

×

W1j

W2j

...
Wnj

 =


d−1

11 W1j

d−1
22 W2j

...
d−1
nnWnj

 (9)

The corresponding computation is data parallel and has
complexity O(nnz). We assume that the sparse similarity
matrix initially resides in the device memory, represented
in COO format. The parallel computation is described in
Algorithm 2. Note that the D−1W will be transformed
to the CSR format to perform the sparse matrix-vector
multiplication at the next step.

An important feature of the ARPACK software is the
reverse communication interfaces, which facilitate the pro-
cess of solving large-scale eigenvalue problems. The reverse
communication interfaces are CPU-based interfaces that
encapsulate implicitly restarted Arnoldi/Lanczos method,
which is an iterative method to obtain the required eigen-
values and corresponding eigenvectors. For each iteration,
the interface provides a n-length vector used as input and
the output of sparse matrix-vector multiplication is provided
back to the interface. ARPACK interfaces combine the



Algorithm 3 Parallel Eigensolver
1. Initialize the object Prob with parameters.
2. While !Prob.converge()
Prob.TakeStep().
Transfer the data located at Prob.GetVector() from host to

device.
Call cusparseDcsrmv to perform matrix-vector multiplication

on device.
Transfer the result from device to host and put it at the location

addressed by Prob.PutVector().
3. Compute the eigenvectors by Prob.FindEigenvectors().

optimized Fortran routines and CPU-based BLAS library
OpenBLAS, which is one of the most efficient CPU-based
BLAS library. ARPACK provides the flexibility in choosing
any matrix representation format and the function to obtain
the results of matrix-vector multiplication. In our implemen-
tation, the matrix-vector multiplication is performed on the
GPU. For each iteration, the input vector is transferred from
the CPU to the GPU and the output vector is transfered
back to the interface. The detailed implementation is shown
in Algorithm 3.

The object Prob is initialized as the eigenvalue problem
for the symmetric real matrix with the k largest-magnitude
eigenvalues. TakeStep() is an interface that performs the
necessary matrix operations based on the multi-threaded
OpenBLAS library. For each iteration, the multiplication
of sparse matrix and dense vector is computed on the
GPU where 1) the sparse matrix is D−1W reside on
GPU; 2) the input vector, whose location is indicated by
Prob.GetVector(), is transferred from CPU to GPU;
3) the result is transfered back from GPU to CPU to
the position Prob.PutVector(). After the object Prob
reaches convergence, the eigenvectors are computed by
Prob.FindEigenvectors().

The complexity of Algorithm 3. largely depends on the
interfaces TakeStep() and FindEigenvectors().
Both routines depend on the number m of Arnoldi/Lanczos
vectors, which is usually set as m = max(n, 2k).
TakeStep() involves the eigenvalue decomposition and
iteratively QR factorization of m×m matrix, as well as a few
dense matrix-vector multiplication. Therefore the complexity
for TakeStep() is at least (O(m3)+O(nm)×O(m−k)).
Moreover, the general complexity for sparse matrix-vector
multiplication is O(nnz ·m). The number of iteration # de-
pends on the initial vector and properties of the matrix. The
complexity FindEigenvectors() is O(nmk). Hence
the overall complexity is,

(O(m3) +O(nm2) +O(nnz ·m))×# +O(nmk) (10)

As far as we know, the procedures described in Algorithm
3 are currently the most efficient and convenient way to solve
general eigenvalue problems for large-scale matrices. We
leverage the existing software ARPACK on CPU to perform
the complex eigensolver procedures and the GPU to perform

Algorithm 4 Parallel K-means Algorithm
1. Transfer the data V ∈ Rn×d from the CPU to the GPU.
2. Randomly select k points as the centroids of the k clusters stored
in C ∈ Rk×d

3. While (the centroids change) do
Compute the pairwise distances S ∈ Rn×k between data points

and the centroids.
Update the new label of each data point.
Compute the new centroids of the clusters.

4. Transfer the labeling result from GPU to CPU.

Algorithm 5 Parallel k-means++ Initialization
1. Pick the initial data point uniformly at random from 1 to n.
2. Initialize the n-length vector Dist where each element is the
shortest distance between the data point vi and the current centroids.
3. for i = 2 to k

Compute the n-length vector P such that Pj =
Dist2j∑n
l=1

Dist2
l

Choose the ith centroid as the data point x with probability Px

Compute the vector newDist such that each ith element as the
distance between the data point vi and the new centroid

Update Dist Distj = minimum(Distj , newDistj)

the expensive matrix computations. Results in Section V. will
show that the data communication overhead is negligible
compared to the overall computational cost and the overall
implementation is very efficient compared to other software
that relies on CPU-based sparse matrix-vector multiplication.

C. Parallel k-means clustering

The k-means clustering algorithm is an iterative algorithm
to partition the input data points into k clusters whose
objective function is to minimize the sum of squared dis-
tances between each point and its representative. In spectral
clustering, the k-means algorithm is used to cluster the rows
of the matrix consisting of the eigenvectors. Each such row
can in fact be viewed as a reduced dimension representation
of the original data point. There are several GPU-based
implementations of the k-means clustering such as [30, 31].
However, none of these implementations seem to be efficient
for large-scale problems, especially when k is very large.
Our implementation is a revised version from an open-source
project 5 which efficiently utilizes the Thrust and CUBLAS
libraries and achieve significant speedups.

We assume that the low-dimensional representation V ∈
Rn×k initially resides in the CPU memory where n is the
number of data points and k is the desired number of
clusters. The implementation is described in Algorithm 4.

Step 2 is the most common way to initialize the centroids.
However, we use a more effective initialization strategy,
referred to as the k-means++ initialization, which has been
shown to converge faster and achieve better results than
the traditional k-means algorithm [32]. This initialization
is simple to implement in parallel using basic routines in
CUDA Thrust library, as described in Algorithm 5,

5https://github.com/bryancatanzaro/kmeans



Step 3 in Algorithm 4 is the main loop that iteratively
updates the labels of the data points and the corresponding
centers of the clusters until convergence (or the maximum
number of iterations is reached). Given the data points V ∈
Rn×d and centroids C ∈ Rk×d, the pair-wise distance matrix
S ∈ Rn×k is computed as follows.

Sij =

d∑
l=1

(Vil − Cjl)
2 (11)

After expanding the right hand side, the distance matrix
S can be expressed as

Sij =

d∑
l=1

(Vil)
2 +

d∑
l=1

(Cjl)
2 − 2

d∑
l=1

VilCjl (12)

Hence, we compute two additional vectors Vnorm ∈ Rn×1

and Cnorm ∈ Rn×1,

Vnorm(i) =

d∑
l=1

(Vil)
2, (13)

Cnorm(j) =

d∑
l=1

(Cjl)
2 (14)

The matrix S can be initialized as the sum of the corre-
sponding elements in Vnorm and Cnorm

Sij = Vnorm(i) + Cnorm(j) (15)

The pair-wise distance matrix S is then computed by
level-3 BLAS function provided in the cuBLAS library.

S = S − 2V CT (16)

For each data point, the new label is updated by as the
index of centroid which has the minimum distance to the
data point. Meanwhile, a global variable is maintained to
record the number of label changes during the update.

The new centroids are updated as the mean value of all the
data points sharing the same label. To identify the points in
each cluster, we sort the data points according to their new
labels. Each GPU thread will then independently work on a
consecutive portion of the sorted data points where most of
these points share the same label.

The entire workflow of our implementation is summarized
in Figure 2.

V. EVALUATION

A. Datasets

We evaluate our parallel implementation on several real-
world and synthetic datasets. The Diffusion Tensor Imag-
ing (DTI) dataset is given as a set of data points, each of
which is characterized by a 90-dimensional array. The other
datasets are specified by an undirected graph data where the
edges are given by an edge list. The problem sizes and the

Figure 2: Parallel Implementation of Spectral Clustering

numbers of clusters generated are shown in Table II. A brief
description of each dataset is given next.

• DTI: The Diffusion Tensor Imaging(DTI) dataset is the
brain image data of a subject chosen from a publicly
accessible medical dataset provided by Nathan Kline
Institute (NKI). The dataset captures the diffusion of
the water molecules in the brain tissues, which can be
used to deduce information about the fiber connectivity
in the human brain. After preprocessing steps [2], the
input data consists of 142K data points, each of which
represents a 2mm×2mm×2mm brain voxel. The entire
data points constitute the brain volume. Each data point
is characterized by a 90-dimensional array representing
the connectivity strength of the voxel to 90 brain re-
gions (representing a segmentation of the grey matter).
The task is to cluster the voxels that share similar
connectivity profiles. To facilitate the construction of
the similarity matrix, an edge list is provided which
contains all pair of voxels that are within 4 millimeter
distance.

• FB: This dataset is a dataset collected by a Facebook
application. It contains the graph where each node
represents an anonymous user and edges exist between
users that share similar political interests[33].

• DBLP: This dataset consists of a comprehensive co-
authorship network in a computer science bibliography.
The nodes represent the authors. Authors are connected
if they coauthored at least one publication[33]. The
dataset contains more than 5000 communities. Here
we set the number of clusters to 500 for experimental
purposes.

• Syn200: The synthetic dataset is randomly generated by
the stochastic block model [34]. The stochastic block
model assumes that the data points are partitioned into
r disjoint subsets, C1, C2, ..., Cr. A symmetric r × r
matrix P is provided to model the inter-community
edge probability. The synthetic sparse graph is ran-
domly generated such that two nodes are connected



Table II. Datasets

Dataset Nodes Edges Clusters
DTI 142541 3992290 500
FB 4039 88234 10

DBLP 317080 1049866 500
Syn200 20000 773388 200

with probability p = 0.3 if they are within the same
cluster and q = 0.01 if they are in different clusters.

B. Environment and Software

The computing environment is a heterogeneous CPU-
GPU platform with CPU and GPU specifics shown in Table
I. The software and packages used are as follows,
• Matlab: Matlab is a high-level language that provides

interactive programing environment, which is widely
used by scientists and engineers. The version of Matlab
used for our implementation is 2015a. The sparse
matrix representation and operations are the built-in
functions. The k-means clustering is the function in
Statistical and Machine Learning toolbox.

• Python: Python software packages, such as Numpy,
Scipy and sklearn, are popular tools to perform sci-
entific computations. The version of Python binary for
our implementation is 2.7.11. The sparse representation
and functions to solve the eigenvalue problems are
from Scipy package. The k-means clustering function is
from sklearn.cluster module. The module versions are
Numpy-1.10.4, Scipy-0.16.1 and sklearn-0.17 respec-
tively.

Linear algebra and numeric functions are by default
multi-threaded in Matlab on multicore and multiprocessor
machines 6. In addition, the Python packages are built on
highly optimized CPU-based BLAS routines, some of which
have been accelerated using multi-threaded programming.

C. Performance Analysis

We measure the running time of our spectral clustering
algorithm on the three components separately: 1) computa-
tion of the similarity matrix; 2) sparse matrix eigensolver;
and 3) the k-means clustering algorithm. For the CUDA
implementation, we measure the time costs that include both
the computational time as well as the extra time for library
initialization time and data communication. Specifically, we
evaluate the performance of each of the following compo-
nents:
• Computation of the similarity matrix:

– initialize CUDA libraries.
– transfer data and edge list from CPU to GPU.
– construct the similarity matrix.

• Sparse matrix eigensolver:

6http://www.mathworks.com/discovery/matlab-multicore.html

Table III. Running Time of Spectral Clustering on DTI
Dataset

Time/s CUDA Matlab Python
Compute Similarity Matrix 0.0331 221.249 220.880

Sparse Eigensolver 475.442 603.165 3281.973
K-means Clustering 5.407 1785.17 2154.7818

Figure 3: Time Costs of Spectral Clustering on DTI Dataset

– data communication between CPU and GPU;
– computation of the eigenvectors;
– transfer of the eigenvectors from CPU to GPU.

• K-means clustering:
– perform the k-means clustering;
– tranfer the clustering result from GPU to CPU.

Figure 3. and Table III. show the time costs of each step
corresponding to the DTI dataset.

It is clear that our CUDA implementation significantly
outperforms the currently fastest known Matlab and Python
implementations at each step. Since the computation of
the similarity matrix is highly parallel, the CUDA imple-
mentation achieves linear speedups by taking advantage of
the GPU with thousands of threads computing the cross
correlation coefficients concurrently. For the Matlab and
Python implementations, the results are based on the serial
implementation which loops over the edge list and computes
the correlation coefficient explicitly using the built-in func-
tion. We also tested an alternative implementation which
takes advantage of vectorization techniques that recast the
loop-based operation into matrix and vector operations. The
optimized Matlab and Python implementationd take 5.753s
and 6.271s trespectively to compute the similarity matrix.

Both Matlab and Python packages utilize the reverse
communication interfaces of ARPACK to compute the
eigenvectors of large-scale symmetric matrix, and hence all
of the three implementations share similar procedures and
interfaces. The basic difference is related to the function to
compute the sparse matrix-vector multiplication. Our CUDA
implementation utilizes the GPU and the cuSPARSE library
to compute the multiplication while Matlab and Python
utilize their built-in routines. Since the GPU performs sig-
nificantly better than the CPU on BLAS operations [5],



Table IV. Running Time of Spectral Clustering on FB
Dataset

Time/s CUDA Matlab Python
Sparse Eigensolver 0.0216 0.1027 0.0851
K-means Clustering 0.007251 0.0205 0.0259

Figure 4: Time Costs of Spectral Clustering on FB Dataset

the CUDA implementation achieves better performance than
Matlab and Python even with the communication overhead.
However, since the time complexity of implicitly restarted
Lanczos method is approximately O(m3 + nm2), the time
spent on the reverse communication interfaces scales rela-
tively poorly, which may become the most computationally
expensive part when k is large.

As for the kmeans clustering algorithm, our CUDA imple-
mentation achieves more than 300x speedup over the Matlab
and Python implementations. The running time of this
step depends on the centroid initialization. The CUDA and
Python implementations utilize the k-means++ initialization,
which leads to fewer number of iterations in general than
Matlab. Moreover, in the CUDA implementation, the process
of transforming the computation of the pair-wise distance
matrix to the BLAS operations significantly accelerates the
running time of the algorithm.

The performance results for the graph datasets (FB,
Syn200, dblp) are shown in Table IV through Table VI and
Figure 4 through Figure 6. Similar to the previous results,
our CUDA implementation achieves the best performance
among the three implementations at each step. However, the
speedup ratio depends on the specific problem size.

The FB dataset contains a very small graph with 4039
nodes and involves very few clusters k = 10. Because the
number of clusters is small, the most expensive computation
of sparse eigensolver is the sparse matrix-vector multipli-
cation. Therefore for this step,the CUDA implementation
achieves around 5x speedup over the other implementations.
For the k-means clustering step, the CUDA implementation
shows only a minor speedup by a factor of around 4x.

The Syn200 dataset contains a medium-sized syn-
thetic graph with 200 clusters. The CUDA implementation
achieves a slight improvement in computing the eigenvectors

Table V. Running Time of Spectral Clustering on Syn200
Dataset

Time/s CUDA Matlab Python
Sparse Eigensolver 4.1153 6.9531 18.915
K-means Clustering 0.02478 38.3728 2.4719

Figure 5: Time Costs of Spectral Clustering on Syn200
Dataset

Table VI. Running Time of Spectral Clustering on dblp
Dataset

Time/s CUDA Matlab Python
Sparse Eigensolver 682.643 1885.2303 9338.31
K-means Clustering 1.79456 1012.92 719.686

Figure 6: Time Costs of Spectral Clustering on dblp Dataset

since the performance is mainly constrained by the CPU-
based routines. For the of k-means clustering step, the
CUDA implementation achieves over 100x speedup.

The dblp dataset contains a large-scale graph with 500
clusters. Both Matlab and Python implementations perform
poorly for such a problem size. Our CUDA implementation
achieve around 3x speedup in sparse eigensolver in spite of
the fact that the performance is still constrained by the CPU-
based interfaces. In the k-means clustering step, the CUDA
implementation achieves over 400x speedup.

Table VII shows a comparison between data communica-
tion time and computation time for the CUDA implementa-
tion on each of our four datasets. The data communication



Table VII. Comparison Between Data Communication
Time and Computation Time

Time/s Communication Computation
DTI 2.248 475.213
FB 0.002131 0.02635

DBLP 2.731 680.31
Syn200 0.0741 3.8201

time includes 1) input data transfered from CPU to GPU;
2) data communication between CPU and GPU during the
execution of the eigensolver stage; 3) output results that are
transferred from GPU to CPU. Given that the bandwidth
remains constant during the execution of the algorithm, the
time complexity of data communication is O(n2 +m×#+
nk) depending on the sparsity ratio of the similarity matrix
and the number of Arnoldi iterations # n; the time com-
plexity of computation is O(nd2 +O(nm2)×#+O(n2k)).
Therefore we expect the data communication time to be less
than the computational time as in fact illustrated in the Table
VII, especially for large-scale problems.

In conclusion, our CUDA implementation always achieves
better performance than Matlab and Python implementations
for each step. The speedup ratio largely depends on the
specific problem size. Our traget applications involve prob-
lems with a large number of clusters. Our implementation
achieves significant speedups for the steps of computing
the similarity matrix and the k-means clustering due to
the massive computational power of GPU. Moreover, we
always achieve some speedups for the sparse eigensolver
step by accelerating the computations involving matrix-
vector multiplications.

VI. CONCLUSION

We presented a high performance implementation of the
spectral clustering algorithm on CPU-GPU platforms. Our
implementation leverages the GPU to accelerate highly par-
allel computations and Basic Linear Algebra Subprograms
(BLAS) operations. We focused on the acceleration of
the three major steps of the spectral clustering algorithm:
1) construction of the similarity matrix; 2) computation
of eigenvectors for large-scale similarity matrices; 3) k-
means clustering algorithm. We believe that we are the
first to accelerate the large-scale eigenvector computation by
combining the interfaces of traditional CPU-based software
packages ARPACK and GPU-based CUDA library. Such
a combination achieves good speedups compared to other
CPU-based software. We deploy a smart seeding strategy
and utilize BLAS operations to implement the fast k-
means clustering algorithm. Our implementation is shown to
achieve significant speedup compared to Matlab and Python
software packages, especially for large-scale problems.
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