
Optimization of Linked List Prefix Computations on Multithreaded GPUs Using
CUDA

Zheng Wei and Joseph JaJa
Department of Electrical and Computer Engineering

Institute for Advanced Computer Studies, University of Maryland
College Park, U. S. A

{zwei, joseph}@umiacs.umd.edu

Abstract—We present a number of optimization techniques to
compute prefix sums on linked lists and implement them on
multithreaded GPUs using CUDA. Prefix computations on
linked structures involve in general highly irregular fine grain
memory accesses that are typical of many computations on
linked lists, trees, and graphs. While the current generation of
GPUs provides substantial computational power and extremely
high bandwidth memory accesses, they may appear at first to
be primarily geared toward streamed, highly data parallel
computations. In this paper, we introduce an optimized
multithreaded GPU algorithm for prefix computations through
a randomization process that reduces the problem to a large
number of fine-grain computations. We map these fine-grain
computations onto multithreaded GPUs in such a way that the
processing cost per element is shown to be close to the best
possible. Our experimental results show scalability for list sizes
ranging from 1M nodes to 256M nodes, and significantly
improve on the recently published parallel implementations of
list ranking, including implementations on the Cell Processor,
the MTA-8, and the NVIDIA GeForce 200 series. They also
compare favorably to the performance of the best known
CUDA algorithm for the scan operation on the Tesla C1060.

Keywords-Prefix Computation, GPU, CUDA, Parallel
Computing

I. INTRODUCTION

It has been widely recognized that the scan operation on
an array of elements plays a fundamental role in parallel
processing [1,2,3]. This operation amounts to computing all
the prefix sums of the elements stored in an array, and was
recognized early on to be solvable by a fast and work-
optimal data parallel algorithm. In this case, a fast parallel
algorithm refers to O(log n) parallel time assuming an
unlimited number of processing elements. By work optimal,
we refer to the fact that the data parallel algorithm
asymptotically employs the same total number of operations
as the best sequential algorithm. A fast and work-efficient
implementation of the scan operation on the NVIDIA GPU
was recently reported in [4]. The computation of prefix sums
on the elements contained in a linked list also plays an
important role in parallel processing of irregular applications
involving linked structures such as trees and graphs [5].
Given that the successor of each node of a linked list can
appear anywhere in the memory, this computation can be
dominated by fine-grain irregular memory accesses and as

such it represents a challenging problem for parallel
computing. It is worth noting that the list ranking problem is
a special case in which all the values stored in the linked list
are equal to the identity element. In such a case, the prefix
sum of a node (called its rank) is equal to the distance of the
node from the head of the list. In this paper, we will tackle
the general prefix sums problem but sometimes refer to it as
list ranking.

The development of parallel algorithms for list ranking
has received significant attention in the literature dating back
to the work of Wyllie [6] in which he introduced the pointer
jumping technique for the PRAM model. More recently, the
emergence of many internet applications that involve
extremely large amounts of data with linked structures has
rekindled interest in list ranking. Recent work on parallel
algorithms for list ranking is reported in [7] and [8], which
will later be compared to the approach developed in this
paper.

Our main contributions can be summarized as follows.
 We develop a CUDA-tailored multithreaded

implementation of a slight variant of the algorithm of
Helman and JaJa [9] and provide an analysis that is
used to determine optimal values for the number of
blocks, number of threads, and number of sublists
handled per thread.

 Experimental results on the NVIDIA Tesla C1060
show linear scalability for lists whose sizes range from
1M to 256M nodes, with the processing time per node
shown to be very close to the best theoretical time that
can be supported by the hardware.

 Our execution times are significantly faster than the
recently published results for list ranking on multicore
processors, and compare favorably to the best known
CUDA implementation of the sequential scan
operation on the same hardware.

II. MULTITHREADED GPUS USING CUDA

A surprising facet of the recent evolution of multicore
processors is the continued appearance of extremely
powerful GPUs that have much better performance to power
ratio than the standard multicore CPUs, and that offer
increasingly more flexible general purpose programming
environments. Examples of such co-processors include the
IBM Cell Broadband Engine (Cell BE), the NVIDIA
GeForce 200 series, and the Intel Larrabee. These multicore

processors provide flexible general-purpose programming
environments with impressive peak performance. Since this
paper is primarily concerned with optimization techniques
for the NVIDIA CUDA programming model [10], we devote
the rest of this section to briefly summarize that
programming model and related features.

The basic architecture of the NVIDIA GeForce 200
series consists of a set of Streaming Multiprocessors (SMs),
each of which containing eight Scalar Processors (SPs or
cores) executing in a SIMD fashion, 16,384 registers, and a
16KB of shared memory. The 16KB shared memory is
organized into 16 banks. Threads running on the same SM
can share data and synchronize limited by the available
resources on the SM. Each SM has small constant and
texture caches. All the SMs have access to a very high
bandwidth Global Memory; such a bandwidth is achieved
only when simultaneous accesses are coalesced into
contiguous 16-word lines. However the latency to access the
global memory is quite high and is around 400-600 cycles.

In our work, we have used the NVIDIA Tesla C1060 that
has 30 SMs coupled to a 4GB global memory with a peak
bandwidth of 102 GB/s. Fig. 1 and Fig. 2 illustrate the
overall architecture of the Tesla C1060.

The characteristics of the memory organization of the
Tesla C1060 are summarized in Table I.

The CUDA programming model envisions phases of
computations running on a host CPU and a massively data
parallel GPU acting as a co-processor. The GPU executes
data parallel functions called kernels using thousands of
threads. Each GPU phase is defined by a grid consisting of
all the threads that execute some kernel function. Each grid
consists of a number of thread blocks such that all the
threads in a thread block are assigned to the same SM.
Several thread blocks can be executed on the same SM, but
this will limit the number of threads per thread block since
they all have to compete for the resources (registers and
shared memory) available on the SM. Programmers need to
optimize the use of shared memory and registers among the
thread blocks executing on the same SM.

Each SM schedules the execution of its threads into
warps, each of which consists of 32 parallel threads. Half-
warp (16 threads), either the first or second half of a warp, is
introduced to match the 16 banks of shared memory. When
all the warp’s operands are available in the shared memory,
the SM issues a single instruction for the 16 threads in a half-
warp. The eight cores will be fully utilized as long as
operands in the shared memory reside in different banks of
the shared memory (or access the same location from a bank).
If a warp stalls, the SM switches to another warp resident in
the same SM.

Optimizing performance of multithreaded computations
on CUDA requires careful consideration of global memory
accesses (as few as possible and should be coalesced into
multiple of contiguous 16-word lines); shared memory
accesses (threads in a warp should access different banks);
and partitioning of thread blocks among SMs; in addition to
carefully designing highly data parallel implementations for
all the kernels involved in the computation.

Figure 1. Architecture of the Tesla C1060

Figure 2. Architecture of the TPC in Tesla C1060

TABLE I. OVERALL MEMORY ORGANIZATION OF THE TESLA C1060

Global

Memory
Shared

Memory
Constant

Cache
Texture
Cache

Size 4GB
16KB per

SM
8KB per

SM
6-8KB
per SM

Accessibility
All

threads

All threads
in the same

block

All
threads

All
threads

Other
Properties

High
latency

Low
latency

Only
readable
by thread

Only
readable
by thread

III. MULTITHREADED LIST RANKING

ALGORITHM AND OPTIMIZATION TECHNIQUES

FOR CUDA

Let L be a singly linked list in which each node contains
two fields, one containing a data element and the second
containing a pointer to the successor. The last node on the
list is distinguished by a negative value in the successor field.
The computation of prefix sums on L amounts to updating
the value in the data field of a node by the sum of the values
stored in the data fields of all the predecessor nodes,
including the node itself. In other words, it is identical to the
scan operation when it is carried out on an array A such that
A[i] holds the value of the node of rank i. We assume that
our list L is represented by an array X such that X[i].prefix
and X[i].succ represent respectively the data and successor
fields. Note that X[i].succ could be any arbitrary index in the

array X. In our case, we assume that the head of L is not
known, and hence has to be identified by the algorithm
before prefix computations can take place. The main reason
for making this assumption is to explore the impact of the
presence of significant caches (as in the Intel Clovertown
processor) since the initial step that determines the head of
the list will fill the cache with some of the input data thereby
rendering the execution of later steps faster on such
processors.

The list ranking problem admits of a simple and effective
sequential algorithm involving two passes through the array
X. The first pass identifies the head of the list, and the second
pass traverses the list, starting from the head, and following
the successor field while accumulating the prefix sums in the
traversal order. This sequential algorithm performs
extremely well in practice, especially if the processor
contains a large enough cache, and hence it is somewhat of a
challenge to develop a work-optimal, data parallel version
that scales linearly.

A. Overview

Before introducing our approach, we quickly review the
best known CUDA implementation of the scan operation on
an array X [4], a considerably simpler problem. The array is
partitioned into subarrays, each group of whose prefix sums
is computed separately by a block of threads using a data
parallel algorithm that is a slight variation of Blelloch’s [3].
The prefix sums of the last element of each subarray are then
written into another array Y, followed by applying the same
scan procedure on Y. Each prefix sum of Y is then added to
each element of the corresponding block of X. This strategy
can be viewed as a divide-and-conquer strategy in which the
conquer steps involve the use of data parallel algorithms. As
is, this strategy will not be appropriate for the list ranking
problem. In particular, each subarray resulting from the
initial partition may contain many sublist fragments of the
initial list, whose head nodes have to be identified before any
useful work can be done. Such a process seems to require
almost as much work as the initial list ranking problem.

Our approach for list ranking is also based on a divide-
and-conquer strategy but the initial partitioning is
randomized. We randomly select s nodes (called splitters)
from L and use these nodes to decompose the list into sublist
fragments (or just sublists), each of which begins with a
random node and consists of the successor nodes until we
reach a node whose successor is a splitter. As we will see
later, the choice of s is critical for optimal performance; the
larger s the better the load balance among the streaming
processors but the more the overhead will be incurred in
combining the partial results. We divide these fragments
equally between CUDA grid blocks, and use highly data
parallel algorithms to process the fragments within each
block. This is followed by a list ranking algorithm applied on
the list L’ consisting of these s random nodes, where the
successor of a random node Z is the first random node
encountered upon the traversal of L starting from Z. The last
merge step is similar to that of the scan operation and
involves adding each prefix sum of L’ to each element of the
corresponding sublist fragment.

 (a) (b)

Figure 3. Input array and the corresponding output for list ranking

B. Detailed Description of Prefix Sums Algorithm

The prefix sums problem is formally defined as follows.
We are given a singly linked list L of n elements stored in an
array X such that X[i] contains two fields, X[i].prefix holding
a data value and X[i].succ holding the array index of its
successor. The successor of the last element of L contains a
negative integer indicating the end of the list. We make the
assumption that the index of the head of the list is not known.
The prefix sum of the ith node (assuming not the head of the
list) is defined by:

X[i].prefix = X[i].data X[pre].prefix,
where pre is the index of the predecessor of X[i] and

can be any binary associative operator. For the head of the
list, the corresponding prefix sum is equal to the value of the
data stored there. Fig. 3 illustrates a simple example of a list
and the corresponding prefix sums.

Our algorithm will follow the strategy outlined in the
previous section using in particular many of the details
developed in [9]. More specifically, our algorithm consists of
the following five steps:
 Step 1: Compute the location of the head of the list.
 Step 2: Select s random locations of X to split the list

into s random sublists, where each random location
provides a pointer to the head of a sublist. As we will
see, the value of s will be selected to guarantee load
balancing with high probability.

 Step 3: Using the standard sequential algorithm,
compute the prefix sums of each sublist separately. All
the sublists can be handled in parallel.

 Step 4: Compute the prefix sums of the list consisting
exclusively of the splitters, where the successor of a
splitter is the next splitter encountered when traversing
the initial list.

 Step 5: Update the prefix value of each element of the
array X by using the prefix sum values computed in
Step 4.

C. Implementation Details and Analysis

The list ranking algorithm in [9] was designed for
symmetric multiprocessors with caches. In our
heterogeneous CPU and GPU platform, we partition the
work so that few specialized tasks that can substantially
benefit from caches are allocated to the CPU. The remaining
tasks are handled by thousands of threads on the GPU in

such a way as to hide memory access latency and make
effective use of the shared memory. The implementation
details of each step are described next.

Step 1 can be implemented as follows. Since each of the
indices between 0 and n-1, except for the index of the head
node, must occur exactly once in the successor fields, the
index of the head node can be computed by the formula:

(1)
_

2

n n
HEAD SUM SUCC

where SUM_SUCC is the sum of the all indices in the

successor fields, except for the negative index. Hence this
step amounts to a sum operation, which can be performed by
a data parallel CUDA algorithm built around a balanced
binary tree [11]. The resulting algorithm is work optimal and
makes effective use of global and shared memory accesses.
The details can be found in [11].

Step 2 is implemented as follows. For every subarray of
X of size n/s, we select a random location as a splitter, and
record it in an array Sublist_head. Then the successor field of
splitter i in the original list is first copied into array
Sublist_scratch[i] and then changed into –i in X to indicate
the fact that it is now the head of sublist i. Hence Step 2
involves highly data parallel computations that are
independent of each other.

Step 3, the most computationally demanding step of our
algorithm, is implemented as follows. The s sublists are
allocated equally among the CUDA blocks, which in turn are
allocated equally among the threads of each block. Each
thread will then compute the prefix sums of each of its
sublists and copy the prefix value of the last element of
sublist i into Sublist_prefix[i]. Note that the head location of
sublist i can be found in Sublist_head[i], and its successor
index in Sublist_scratch[i]. The end of a sublist can be
identified by the negative successor index, indicating the
head of another sublist. Also, once a node is traversed, its
successor is changed into –j if it belongs to sublist j.

Using Lemma 1 of [9], the total number of nodes handled
by a thread is about the same as any other thread with high
probability if the number of sublists is at least lnp n and the

number of processors p is
ln

n

n
 , where n is the total

number of nodes in the original list. We will later determine
the best combination of the values of the number of blocks,
the number of threads per block, and the number of sublists
per thread, which will clearly satisfy these conditions.

Step 4 uses the standard sequential algorithm to carry out
the prefix computations on the list of splitters. In our case,
this step is executed on the CPU since the amount of data
involved is quite small. As we will see, the amount of time
taken by this step (including the time to move the list of
splitters from the GPU global memory to the main memory
and back into the GPU global memory) is less than 3% of the
total execution time of the algorithm.

Step 5 updates the values of the prefix sums computed in
Step 3 using the splitters prefix sums of Step 4. Hence we
have to identify the sublist of X[i] for each i. This can easily
be done by checking the value of X[i].successor, which was

set to the negative index of the corresponding sublist.
Therefore, all the elements of X can be updated as follows:

for all i between 1 and n do in parallel
X[i].prefix= X[i].prefix Sublist_prefix[-X[i].successor]

We perform this operation using coalesced memory
accesses to the array X. We store Sublist_prefix into the
constant memory of the Tesla C1060 and then each SM can
use its constant memory cache to load Sublist_prefix instead
of always fetching it from global memory.

D. Comparison with Recent Parallel List Ranking
Algorithms

While both [7] and [8] use the algorithm of [9] as the
basis of their list ranking algorithms for CUDA and the Cell
Processor respectively, there are a significant number of
differences between their implementations and ours. We
focus here on the main differences with [8] and ours since
they use the same CUDA programming model. The main
differences are:
 The algorithm in [8] uses n/logn or n/(2log2n) as the

number of splitters, which tends to generate too many
sublists for very large n. As a result, handling the list
of splitters and combining the results incur a very
significant overhead. In our implementation we strike
an optimal balance between the desirability of a large
number of sublists (for fine-grain data parallel
computations and load balancing) and the
splitting/merging costs.

 The algorithm of [8] recursively computes the prefix
sum of Sublist_prefix, which will incur a very
significant overhead. We simply perform this step
using a sequential algorithm on the CPU. In our case,
the execution time of this step is at most 3% of the
total time.

 It is not clear how the splitters in [8] are selected.
Unless they are selected carefully, the longest sublist
can be very long in which case no load balancing will
be possible. In our algorithm, we select the splitters in
such a way as to guarantee load balancing with high
probability.

 Another difference is the fact that [8] assume that they
already know the head of the list, which makes their
problem slightly easier than ours.

IV. EXPERIMENTAL RESULTS

Our prefix sums algorithm is tested on the NVIDIA Tesla
C1060 graphic card as a co-processor to an Intel Xeon
X5260 Processor. Each of the input arrays consists of 64-bit
entries such that 32 bits are reserved for the data field and the
remaining 32 bits are reserved for the successor field. We
select addition as our associative operation. As in [9], we
consider three main types of input: (i) random, in which the
successor is selected randomly from among the indices of the
array; (ii) ordered, in which the successor node is the next
consecutive node in the array; and (iii) stride of size d, in
which the successor of each node is d indices away from the
node, with wrapping around as necessary, and where d is

some integer constant. We typically run each test hundreds
of times, and report the average times over all these runs.

A. Performance as a Function of Various Parameters

We conduct extensive tests to determine the performance
of our algorithm as a function of: (i) type of list (random,
ordered, stride); (ii) number of random splitters (i.e. number
of sublists). In the rest of this section, we give a summary of
the results of these tests.
Performance as a Function of the types of lists

Typical execution times of our algorithm on ordered,
random, and stride (with different stride values) lists with
64M (1M = 220) nodes are shown in Fig. 4. Tests run using
different list sizes show a very similar pattern. Parameters
(number of sublists, number of blocks, number of threads per
block, and number of sublists per thread) are selected to
yield the best performance for each type. The values of these
parameters turn out to be the same for all list types. The
results show a slightly faster performance on ordered lists,
and show performance on stride lists which ranges from that
of ordered lists to that of random lists depending on the size
of the stride. However, overall the difference in execution
times is at most 10%.

Given the overall memory architecture of the Tesla, these
results are not surprising. Note that since parallel accesses to
contiguous locations can be coalesced, we see a slightly
improved performance on ordered lists, or stride lists with
small strides. However memory coalescing is limited once
parallel threads process different sublists that are relatively
far apart. An important observation is that when the stride
value is large enough (> 100), the performance on stride lists
is almost identical or worse to that on random lists. Given
this fact, we use stride lists with different stride values
(typically stride value = 1,001) to report on the performance
of our algorithm since it is much easier to generate such lists.
Performance as a Function of the number of sublists

We focus our attention here in determining the best value
of s, the number of sublists. This issue is somewhat
intertwined with the choices of other parameters such as
number of blocks, number of threads per block, and number
of sublists per thread.

271 273 277

297 297 297 297

0

80

160

240

320

Ordered S=1 S=11 S=101 S=1001 S=10001 Random

List Type

R
u

n
n

in
g

 T
im

e
(m

il
li

se
co

n
d

s)

Figure 4. Performance of our algorithm on different types of lists with

64M nodes

Since the head of each sublist is randomly selected, the
length of each sublist may vary over a large range. To
achieve the best performance, we must try to balance the
work load (number of nodes processed) among all the SMs
and the SPs, which is in particular critical for the most
computationally demanding Step 3 of our algorithm. In fact,
the running time of Step 3 is dominated by the execution
time of the SM that has to process the maximum number of
nodes.

For a fixed value of s, it is clear from the randomization
performed in Step 2 that the more sublists are assigned to
each thread, the more load balanced the work of the threads
will be. This is intuitively clear and also follows from the
proof of the main lemma in [9]. Hence this implies that a
smaller number of threads will yield better performance. We
can make the same argument regarding the number of blocks.
For our Tesla processor, the number of blocks has to be a
multiple of 30 (including 30 itself) and the number of threads
per block has to be a multiple of 64. It turns that, for a fixed
size list, the best performance is achieved when the number
of blocks is equal to 30 and the number of threads per block
is set equal to 64. Fixing these two parameters, we now take
a close look at the execution time of Step 3 and overall
execution time of the algorithm as a function of the number
of sublists for a list of size 64M.

As expected, the execution time of Step 3 decreases as
the number s of sublists increases. However the overhead to
create these lists (Step 2) and to combine the partial results
(Step 4) will eliminate any gain beyond the valued of
s=61,440, resulting from the combination of 30 blocks, 64
threads per block, and 32 sublists per thread. It turns out that
these values are consistent for all lists of sizes larger than
16M (up to 256M in our tests). Also, note that in the same
graph we show that the maximum number of nodes handled
by any SM, which decreases as we increase the number of
splitters.

0

60

120

180

240

300

360

420

1920 3840 7680 18432 30720 61440 122880 245760

Number of Total Sublists

R
u

n
n

in
g

 T
im

e
(m

il
li

se
co

n
d

s)

0

500000

1000000

1500000

2000000

2500000

3000000

M
axim

u
m

 N
u

m
b

er o
f N

o
d

es H
an

d
led

 b
y O

n
e

S
M

Step 3 Running Time
Total Running TIme
of Nodes per SM

Figure 5. Performance of Step 3 and overall algorithm as a function of s
on 64M stride list (stride = 1001). Upper curve represents the maximum

load on an SM as a function of s.

B. Overall Performance of our Algorithm and its
Scalability

We now report on the overall performance of our
algorithm as a function of the list size using stride lists
whose sizes range from 1M to 256M. Table II shows the
detailed execution times of each of the steps for different list
sizes. We have used the number of blocks to be 30 and the
number of threads per block to be 64 based on the discussion
above. The number of sublists per thread increases linearly
with list size until it reaches 32, after which the running time
spent on dividing and conquering increases faster than the
time saved in fine tuning the loads among the threads. The
overall running time scales linearly with the size of the list as
illustrated by the graph in Fig. 6.

C. How much Can our Algorithm be Improved?

We now take a close look at the processing time per node
achieved by our algorithm as a function of the list size
ranging from 1M to 256M. Based on our extensive tests, the
processing cost per node ranges between 4.28ns to 5.33ns, as
long as the stride value is not extremely large. However, and
surprisingly, the processing cost per node seems to increase
significantly when the stride value is extremely large. To
better understand this unexpected phenomenon and to
determine whether our cost per node can theoretically be
improved, we develop an optimized CUDA program whose
main goal is to only access the device global memory at a
very fine granularity, and compare its execution time per
element to that of our prefix sums algorithm. It turns out that
the performance of our algorithm is very close to the
optimized global memory testing algorithm, both for
extremely large strides and for moderate/small strides. We
provide the details next.

Let Y be an array such that each entry consists of 64 bits.
We develop a trivial CUDA algorithm such that each of its
threads reads a location of Y (dependent on the thread ID),
and then successively reads N locations which are at a certain
stride d from the initial location. Our goal is to develop such
a CUDA algorithm that results in the best possible
performance per single access. Let B be the number of
blocks and Th be the number of threads of our program. We
conduct tests based on the following 224 possible
combinations of the values of B, Th, and N:

B = { 8, 15, 16, 30, 32, 60, 64, 128 };
Th = { 8, 16, 32, 64, 128, 256, 512};
N = { 1024, 2048, 4096, 8192}.

The ranges above seem to cover all reasonable values to
achieve the best possible access cost per element. After
exploring all the combinations, the values achieving the best
access time per element turn out to be: B = 16, Th = 64 and N
= 4096. Some other combinations came close but not as good
as this combination. The typical time per access is 4.044067
ns for many of the tested sizes for the array Y (varied from
1M to 256M entries – that is, actual size of array Y varies
from 8MB to 2GB).

TABLE II. EXECUTION TIMES IN SECONDS OF THE DIFFERENT STEPS
OF OUR ALGORITHM AS A FUNCTION OF THE LIST SIZE. WE USE STRIDE LISTS

(STRIDE VALUE = 1001)

0.001

0.01

0.1

1

10

1M 2M 4M 8M 16M 32M 64M 128M 256M

List Size (1M=1,048,576)

R
u

n
n

in
g

 T
im

e
(s

ec
s)

Figure 6. Scalability to list sizes on Stride lists (stride = 1001)

We now compare the performance of the global memory
testing algorithm with that of our prefix sums algorithm
focusing on stride lists, starting with the case of stride value
d =1001. A summary of the results is shown in Table III,
which is also illustrated in the graph shown in Fig. 7. These
results clearly demonstrate that the performance of our list
ranking program is very close to the performance achieved
by the optimized global memory testing program.

TABLE III. TIME IN NANOSECONDS PER ELEMENT COMPARISON
BETWEEN LIST RANKING AND GLOBAL MEMORY TESTING PROGRAM (STRIDE

= 1001)

Figure 7. Time per element comparison between list ranking and global

memory testing program (Stride = 1001) on the Tesla C1060

TABLE IV. PERFORMANCE COMPARISON OF COST PER ELEMENT IN
NANOSECONDS BETWEEN LIST RANKING AND GLOBAL MEMORY TESTING

PROGRAM USING EXTREMELY LARGE STRIDES

Figure 8. Time per element comparison between list ranking and global

memory testing program with extremely large strides

We now consider the case of extremely large stride
values which are close to the size of lists. In this case, the
performance degrades substantially when the stride value is
64M or larger (and hence list sizes are larger than 64M nodes)
both by the global memory testing program as well as our
prefix sums algorithm. However the performance per
element still matches for both algorithms. Table IV and Fig.
8 illustrate the performance of both algorithms for extremely
large stride values.

D. Performance Comparison on Different Machines

In this section, we compare the performance of our prefix
sums algorithm on the Tesla C1060 and the Intel 8-core
Clovertown, as well as, to the performance of other recently
reported list ranking algorithms on the Cell Processor, the
MTA-8 (eight 220MHz Cray MTA-2 processors) [7], and
the NVIDIA GTX280 [8]. Our Intel Clovertown consists of
four duo-cores, each with 4MB of L2 cache. The overall
Clovertown architecture is illustrated in Fig. 9.

Figure 9. An overview of the architecture of the Clovertown

Figure 10. Comparison of different platforms on Random List with 8M

nodes

Fig. 10 provides a summary of the overall performance
of our prefix sums algorithm on the Tesla and Clovertown,
and the best performance numbers reported on other
machines for the list ranking problem on random list with
8M nodes. It is clear that our algorithm achieves the best raw
performance even when compared to the Cray MTA-8
machine. The high performance of our algorithm can be
attributed to the following facts:
 Our implementation uses thousands of active threads

to make effective use of the hundreds of processors
available and to hide memory access latency;

 Cache sensitive computations are migrated to the CPU
while the Cell has a small local cache and the MTA-8
has no local cache;

 The tradeoff between balanced workload for each
processor and a small overhead of merging parallel
results is well addressed and as a result the power of
the underlying GPU hardware is fully utilized;

 Shared memory with one clock cycle access time
among eight SPs from the same SM is used whenever
applicable to reduce the inter-processor
synchronization and communication overhead of
parallelism; on the other hand, processors on either the
Cell or the MTA-8 are interconnected by networks
with relatively high latency;

 Global memory accesses are coalesced to exploit the
high bandwidth of the GPU whenever possible.

We now compare the performance of our algorithm to
that of the scan operation on the Tesla C1060, as well as to
that of the Clovertown on ordered lists. Clearly we expect
the Clovertown performance to improve significantly on
ordered lists because of the L2 cache. On the other hand, the
scan operation is specifically designed for sequential lists,
and hence optimized coalescing of global memory accesses
and optimized access to the shared memory (that is, avoiding
bank conflicts) are reported in the CUDA implementation of
[4]. A summary of the results is illustrated in Fig. 11 for the
case of 64M nodes. Both the scan algorithm and our
algorithm are run on the Tesla C1060, and the performance
ratio 7-8 of our algorithm compared to the scan operation
seems to hold independent of the list size.

Figure 11. Performance of the scan operation and our list ranking

algorithm applied to 64M ordered list on the Tesla C1060. The rightmost
bar represents the performance of our algorithm on the Clovertown using

the same ordered list.

V. CONCLUSION

In this paper, we presented an optimized CUDA
algorithm for performing prefix sums on linked lists. Such
computation amounts to highly irregular, fine-grain global
memory accesses, and hence is usually considered to be
unsuitable for the stream based, data parallel CUDA
programming model. The algorithm creates randomized
sublists that are handled by parallel threads in such a way
that the merging operation is organized to exploit the CUDA
architecture. We have conducted extensive tests of our
algorithm on the Tesla C1060 using different types of linked
lists of sizes ranging from 1M nodes to 256M nodes. The
results show scalable performance with the cost of
processing a node close to the best possible for the Tesla
processor. A byproduct of our tests is the discovery of
significant memory performance degradation whenever the
consecutive locations accessed by a thread become far apart.

ACKNOWLEDGMENT

We would like to thank Dave Luebke and NVIDIA for
providing the Tesla processors used in this research and
Mark Harris from NVIDIA for providing help in CUDA
programming. This research was partially supported through
an NSF Research Infrastructure award, grant number CNS
0403313.

REFERENCES
[1] G. E. Blelloch, “Vector Models for Data-Parallel Computing,” MIT

Press, Cambridge, London, 1990.

[2] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens,
“Scan primitives for GPU computing,” Proceedings of the 22nd ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware,
2007, pp. 97-106.

[3] G. E. Blelloch, “Prefix sums and their applications,” Chapter 1 in
Synthesis of Parallel Algorithms by J. H. Reif, Morgan Kaufmann
Publishers Inc., San Mateo, California, 1993, pp. 35-60.

[4] Mark Harris, “Parallel Prefix Sum (Scan) with CUDA,” NVIDIA
Corporation, 2008.

[5] Joseph JaJa, “And Introduction to Parallel Algorithms,” Addison-
Wesley Publishing Company, New York, 1992.

[6] J. C. Wyllie, “The Complexity of Parallel Computations,” PhD Thesis,
Department of Computer Science, Cornell University, Ithaca, NY,
1979.

[7] D. A. Bader, Virat Agarwal, and Kamesh Madduri, “On the Design
and Analysis of Irregular Algorithms on the Cell Processor: A Case
Study of List Ranking,” IEEE International Parallel and Distributed
Processing Symposium, 2007.

[8] M. Suhail Rehman, Kishore Kothapalli, and P. J. Narayanan, “Fast
and Scalable List Ranking on the GPU,” 23rd International
Conference on Supercomputing (ICS), New York, USA, 2009.

[9] David R. Helman, Joseph JaJa, “Prefix Computations on symmetric
multiprocessors,” Journal of Parallel and Distributed Computing,
2001, 61(2): pp. 265-278.

[10] NVIDIA Corporation, NVIDIA CUDA Programming Guide Version
2.2.1, 2009.

[11] Mark Harris, “Optimizing Parallel Reduction in CUDA,” available at
http://developer.download.nvidia.com/compute/cuda/sdk/website/proj
ects/reduction/doc/reduction.pdf.

