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Abstract—We present a number of optimization techniques to 
compute prefix sums on linked lists and implement them on 
multithreaded GPUs using CUDA. Prefix computations on 
linked structures involve in general highly irregular fine grain 
memory accesses that are typical of many computations on 
linked lists, trees, and graphs. While the current generation of 
GPUs provides substantial computational power and extremely 
high bandwidth memory accesses, they may appear at first to 
be primarily geared toward streamed, highly data parallel 
computations. In this paper, we introduce an optimized 
multithreaded GPU algorithm for prefix computations through 
a randomization process that reduces the problem to a large 
number of fine-grain computations. We map these fine-grain 
computations onto multithreaded GPUs in such a way that the 
processing cost per element is shown to be close to the best 
possible. Our experimental results show scalability for list sizes 
ranging from 1M nodes to 256M nodes, and significantly 
improve on the recently published parallel implementations of 
list ranking, including implementations on the Cell Processor, 
the MTA-8, and the NVIDIA GeForce 200 series. They also 
compare favorably to the performance of the best known 
CUDA algorithm for the scan operation on the Tesla C1060. 

Keywords-Prefix Computation, GPU, CUDA, Parallel 
Computing 

I.  INTRODUCTION 

It has been widely recognized that the scan operation on 
an array of elements plays a fundamental role in parallel 
processing [1,2,3]. This operation amounts to computing all 
the prefix sums of the elements stored in an array, and was 
recognized early on to be solvable by a fast and work-
optimal data parallel algorithm. In this case, a fast parallel 
algorithm refers to O(log n) parallel time assuming an 
unlimited number of processing elements. By work optimal, 
we refer to the fact that the data parallel algorithm 
asymptotically employs the same total number of operations 
as the best sequential algorithm. A fast and work-efficient 
implementation of the scan operation on the NVIDIA GPU 
was recently reported in [4]. The computation of prefix sums 
on the elements contained in a linked list also plays an 
important role in parallel processing of irregular applications 
involving linked structures such as trees and graphs [5]. 
Given that the successor of each node of a linked list can 
appear anywhere in the memory, this computation can be 
dominated by fine-grain irregular memory accesses and as 

such it represents a challenging problem for parallel 
computing. It is worth noting that the list ranking problem is 
a special case in which all the values stored in the linked list 
are equal to the identity element. In such a case, the prefix 
sum of a node (called its rank) is equal to the distance of the 
node from the head of the list. In this paper, we will tackle 
the general prefix sums problem but sometimes refer to it as 
list ranking.  

The development of parallel algorithms for list ranking 
has received significant attention in the literature dating back 
to the work of Wyllie [6] in which he introduced the pointer 
jumping technique for the PRAM model. More recently, the 
emergence of many internet applications that involve 
extremely large amounts of data with linked structures has 
rekindled interest in list ranking. Recent work on parallel 
algorithms for list ranking is reported in [7] and [8], which 
will later be compared to the approach developed in this 
paper. 

Our main contributions can be summarized as follows. 
 We develop a CUDA-tailored multithreaded 

implementation of a slight variant of the algorithm of 
Helman and JaJa [9] and provide an analysis that is 
used to determine optimal values for the number of 
blocks, number of threads, and number of sublists 
handled per thread. 

 Experimental results on the NVIDIA Tesla C1060 
show linear scalability for lists whose sizes range from 
1M to 256M nodes, with the processing time per node 
shown to be very close to the best theoretical time that 
can be supported by the hardware. 

 Our execution times are significantly faster than the 
recently published results for list ranking on multicore 
processors, and compare favorably to the best known 
CUDA implementation of the sequential scan 
operation on the same hardware. 

II. MULTITHREADED GPUS USING CUDA 

A surprising facet of the recent evolution of multicore 
processors is the continued appearance of extremely 
powerful GPUs that have much better performance to power 
ratio than the standard multicore CPUs, and that offer 
increasingly more flexible general purpose programming 
environments. Examples of such co-processors include the 
IBM Cell Broadband Engine (Cell BE), the NVIDIA 
GeForce 200 series, and the Intel Larrabee. These multicore 



processors provide flexible general-purpose programming 
environments with impressive peak performance. Since this 
paper is primarily concerned with optimization techniques 
for the NVIDIA CUDA programming model [10], we devote 
the rest of this section to briefly summarize that 
programming model and related features. 

The basic architecture of the NVIDIA GeForce 200 
series consists of a set of Streaming Multiprocessors (SMs), 
each of which containing eight Scalar Processors (SPs or 
cores) executing in a SIMD fashion, 16,384 registers, and a 
16KB of shared memory. The 16KB shared memory is 
organized into 16 banks. Threads running on the same SM 
can share data and synchronize limited by the available 
resources on the SM. Each SM has small constant and 
texture caches. All the SMs have access to a very high 
bandwidth Global Memory; such a bandwidth is achieved 
only when simultaneous accesses are coalesced into 
contiguous 16-word lines. However the latency to access the 
global memory is quite high and is around 400-600 cycles.  

In our work, we have used the NVIDIA Tesla C1060 that 
has 30 SMs coupled to a 4GB global memory with a peak 
bandwidth of 102 GB/s. Fig. 1 and Fig. 2 illustrate the 
overall architecture of the Tesla C1060. 

The characteristics of the memory organization of the 
Tesla C1060 are summarized in Table I. 

The CUDA programming model envisions phases of 
computations running on a host CPU and a massively data 
parallel GPU acting as a co-processor. The GPU executes 
data parallel functions called kernels using thousands of 
threads. Each GPU phase is defined by a grid consisting of 
all the threads that execute some kernel function. Each grid 
consists of a number of thread blocks such that all the 
threads in a thread block are assigned to the same SM. 
Several thread blocks can be executed on the same SM, but 
this will limit the number of threads per thread block since 
they all have to compete for the resources (registers and 
shared memory) available on the SM. Programmers need to 
optimize the use of shared memory and registers among the 
thread blocks executing on the same SM. 

Each SM schedules the execution of its threads into 
warps, each of which consists of 32 parallel threads. Half-
warp (16 threads), either the first or second half of a warp, is 
introduced to match the 16 banks of shared memory. When 
all the warp’s operands are available in the shared memory, 
the SM issues a single instruction for the 16 threads in a half-
warp. The eight cores will be fully utilized as long as 
operands in the shared memory reside in different banks of 
the shared memory (or access the same location from a bank). 
If a warp stalls, the SM switches to another warp resident in 
the same SM.  

Optimizing performance of multithreaded computations 
on CUDA requires careful consideration of global memory 
accesses (as few as possible and should be coalesced into 
multiple of contiguous 16-word lines); shared memory 
accesses (threads in a warp should access different banks); 
and partitioning of thread blocks among SMs; in addition to 
carefully designing highly data parallel implementations for 
all the kernels involved in the computation. 

 
Figure 1.  Architecture of the Tesla C1060 

  
Figure 2.  Architecture of the TPC in Tesla C1060 

TABLE I.  OVERALL MEMORY ORGANIZATION OF THE TESLA C1060 

 
Global 

Memory
Shared 

Memory 
Constant 

Cache 
Texture 
Cache 

Size 4GB 
16KB per 

SM 
8KB per 

SM 
6-8KB 
per SM 

Accessibility
All 

threads 

All threads 
in the same 

block 

All 
threads 

All 
threads 

Other 
Properties 

High 
latency 

Low 
latency 

Only 
readable 
by thread

Only 
readable 
by thread

III. MULTITHREADED LIST RANKING 

ALGORITHM AND OPTIMIZATION TECHNIQUES 

FOR CUDA 

Let L be a singly linked list in which each node contains 
two fields, one containing a data element and the second 
containing a pointer to the successor. The last node on the 
list is distinguished by a negative value in the successor field. 
The computation of prefix sums on L amounts to updating 
the value in the data field of a node by the sum of the values 
stored in the data fields of all the predecessor nodes, 
including the node itself. In other words, it is identical to the 
scan operation when it is carried out on an array A such that 
A[i] holds the value of the node of rank i. We assume that 
our list L is represented by an array X such that X[i].prefix 
and X[i].succ represent respectively the data and successor 
fields. Note that X[i].succ could be any arbitrary index in the 



array X. In our case, we assume that the head of L is not 
known, and hence has to be identified by the algorithm 
before prefix computations can take place. The main reason 
for making this assumption is to explore the impact of the 
presence of significant caches (as in the Intel Clovertown 
processor) since the initial step that determines the head of 
the list will fill the cache with some of the input data thereby 
rendering the execution of later steps faster on such 
processors.  

The list ranking problem admits of a simple and effective 
sequential algorithm involving two passes through the array 
X. The first pass identifies the head of the list, and the second 
pass traverses the list, starting from the head, and following 
the successor field while accumulating the prefix sums in the 
traversal order. This sequential algorithm performs 
extremely well in practice, especially if the processor 
contains a large enough cache, and hence it is somewhat of a 
challenge to develop a work-optimal, data parallel version 
that scales linearly. 

A. Overview 

Before introducing our approach, we quickly review the 
best known CUDA implementation of the scan operation on 
an array X [4], a considerably simpler problem. The array is 
partitioned into subarrays, each group of whose prefix sums 
is computed separately by a block of threads using a data 
parallel algorithm that is a slight variation of Blelloch’s [3]. 
The prefix sums of the last element of each subarray are then 
written into another array Y, followed by applying the same 
scan procedure on Y. Each prefix sum of Y is then added to 
each element of the corresponding block of X. This strategy 
can be viewed as a divide-and-conquer strategy in which the 
conquer steps involve the use of data parallel algorithms. As 
is, this strategy will not be appropriate for the list ranking 
problem. In particular, each subarray resulting from the 
initial partition may contain many sublist fragments of the 
initial list, whose head nodes have to be identified before any 
useful work can be done. Such a process seems to require 
almost as much work as the initial list ranking problem. 

Our approach for list ranking is also based on a divide-
and-conquer strategy but the initial partitioning is 
randomized. We randomly select s nodes (called splitters) 
from L and use these nodes to decompose the list into sublist 
fragments (or just sublists), each of which begins with a 
random node and consists of the successor nodes until we 
reach a node whose successor is a splitter. As we will see 
later, the choice of s is critical for optimal performance; the 
larger s the better the load balance among the streaming 
processors but the more the overhead will be incurred in 
combining the partial results. We divide these fragments 
equally between CUDA grid blocks, and use highly data 
parallel algorithms to process the fragments within each 
block. This is followed by a list ranking algorithm applied on 
the list L’ consisting of these s random nodes, where the 
successor of a random node Z is the first random node 
encountered upon the traversal of L starting from Z. The last 
merge step is similar to that of the scan operation and 
involves adding each prefix sum of L’ to each element of the 
corresponding sublist fragment. 

 
      (a)                                                           (b) 

Figure 3.  Input array and the corresponding output for list ranking 

B. Detailed Description of Prefix Sums Algorithm 

The prefix sums problem is formally defined as follows. 
We are given a singly linked list L of n elements stored in an 
array X such that X[i] contains two fields, X[i].prefix holding 
a data value and X[i].succ holding the array index of its 
successor. The successor of the last element of L contains a 
negative integer indicating the end of the list. We make the 
assumption that the index of the head of the list is not known. 
The prefix sum of the ith node (assuming not the head of the 
list) is defined by:  

X[i].prefix = X[i].data   X[pre].prefix, 
where pre is the index of the predecessor of X[i] and   

can be any binary associative operator. For the head of the 
list, the corresponding prefix sum is equal to the value of the 
data stored there. Fig. 3 illustrates a simple example of a list 
and the corresponding prefix sums. 

Our algorithm will follow the strategy outlined in the 
previous section using in particular many of the details 
developed in [9]. More specifically, our algorithm consists of 
the following five steps: 
 Step 1: Compute the location of the head of the list.  
 Step 2: Select s random locations of X to split the list 

into s random sublists, where each random location 
provides a pointer to the head of a sublist. As we will 
see, the value of s will be selected to guarantee load 
balancing with high probability. 

 Step 3: Using the standard sequential algorithm, 
compute the prefix sums of each sublist separately. All 
the sublists can be handled in parallel. 

 Step 4: Compute the prefix sums of the list consisting 
exclusively of the splitters, where the successor of a 
splitter is the next splitter encountered when traversing 
the initial list.  

 Step 5: Update the prefix value of each element of the 
array X by using the prefix sum values computed in 
Step 4. 

C. Implementation Details and Analysis 

The list ranking algorithm in [9] was designed for 
symmetric multiprocessors with caches. In our 
heterogeneous CPU and GPU platform, we partition the 
work so that few specialized tasks that can substantially 
benefit from caches are allocated to the CPU. The remaining 
tasks are handled by thousands of threads on the GPU in 



such a way as to hide memory access latency and make 
effective use of the shared memory.  The implementation 
details of each step are described next.  

Step 1 can be implemented as follows. Since each of the 
indices between 0 and n-1, except for the index of the head 
node, must occur exactly once in the successor fields, the 
index of the head node can be computed by the formula:  

( 1)
_

2

n n
HEAD SUM SUCC


 

 
where SUM_SUCC is the sum of the all indices in the 

successor fields, except for the negative index. Hence this 
step amounts to a sum operation, which can be performed by 
a data parallel CUDA algorithm built around a balanced 
binary tree [11]. The resulting algorithm is work optimal and 
makes effective use of global and shared memory accesses. 
The details can be found in [11]. 

Step 2 is implemented as follows. For every subarray of 
X of size n/s, we select a random location as a splitter, and 
record it in an array Sublist_head. Then the successor field of 
splitter i in the original list is first copied into array 
Sublist_scratch[i] and then changed into –i in X to indicate 
the fact that it is now the head of sublist i. Hence Step 2 
involves highly data parallel computations that are 
independent of each other. 

Step 3, the most computationally demanding step of our 
algorithm, is implemented as follows. The s sublists are 
allocated equally among the CUDA blocks, which in turn are 
allocated equally among the threads of each block. Each 
thread will then compute the prefix sums of each of its 
sublists and copy the prefix value of the last element of 
sublist i into Sublist_prefix[i]. Note that the head location of 
sublist i can be found in Sublist_head[i], and its successor 
index in Sublist_scratch[i]. The end of a sublist can be 
identified by the negative successor index, indicating the 
head of another sublist. Also, once a node is traversed, its 
successor is changed into –j if it belongs to sublist j.  

Using Lemma 1 of [9], the total number of nodes handled 
by a thread is about the same as any other thread with high 
probability if the number of sublists is at least lnp n  and the 

number of processors p is  
ln

n

n
 , where n is the total 

number of nodes in the original list. We will later determine 
the best combination of the values of the number of blocks, 
the number of threads per block, and the number of sublists 
per thread, which will clearly satisfy these conditions. 

Step 4 uses the standard sequential algorithm to carry out 
the prefix computations on the list of splitters. In our case, 
this step is executed on the CPU since the amount of data 
involved is quite small. As we will see, the amount of time 
taken by this step (including the time to move the list of 
splitters from the GPU global memory to the main memory 
and back into the GPU global memory) is less than 3% of the 
total execution time of the algorithm.  

Step 5 updates the values of the prefix sums computed in 
Step 3 using the splitters prefix sums of Step 4. Hence we 
have to identify the sublist of X[i] for each i. This can easily 
be done by checking the value of X[i].successor, which was 

set to the negative index of the corresponding sublist. 
Therefore, all the elements of X can be updated as follows: 

for all i between 1 and n do in parallel 
X[i].prefix= X[i].prefix Sublist_prefix[-X[i].successor] 

We perform this operation using coalesced memory 
accesses to the array X. We store Sublist_prefix into the 
constant memory of the Tesla C1060 and then each SM can 
use its constant memory cache to load Sublist_prefix instead 
of always fetching it from global memory. 

D. Comparison with Recent Parallel List Ranking 
Algorithms 

While both [7] and [8] use the algorithm of [9] as the 
basis of their list ranking algorithms for CUDA and the Cell 
Processor respectively, there are a significant number of 
differences between their implementations and ours. We 
focus here on the main differences with [8] and ours since 
they use the same CUDA programming model. The main 
differences are: 
 The algorithm in [8] uses n/logn or n/(2log2n) as the 

number of splitters, which tends to generate too many 
sublists for very large n. As a result, handling the list 
of splitters and combining the results incur a very 
significant overhead. In our implementation we strike 
an optimal balance between the desirability of a large 
number of sublists (for fine-grain data parallel 
computations and load balancing) and the 
splitting/merging costs.  

 The algorithm of [8] recursively computes the prefix 
sum of Sublist_prefix, which will incur a very 
significant overhead. We simply perform this step 
using a sequential algorithm on the CPU. In our case, 
the execution time of this step is at most 3% of the 
total time. 

 It is not clear how the splitters in [8] are selected. 
Unless they are selected carefully, the longest sublist 
can be very long in which case no load balancing will 
be possible. In our algorithm, we select the splitters in 
such a way as to guarantee load balancing with high 
probability.  

 Another difference is the fact that [8] assume that they 
already know the head of the list, which makes their 
problem slightly easier than ours. 

IV. EXPERIMENTAL RESULTS 

Our prefix sums algorithm is tested on the NVIDIA Tesla 
C1060 graphic card as a co-processor to an Intel Xeon 
X5260 Processor. Each of the input arrays consists of 64-bit 
entries such that 32 bits are reserved for the data field and the 
remaining 32 bits are reserved for the successor field. We 
select addition as our associative   operation. As in [9], we 
consider three main types of input: (i) random, in which the 
successor is selected randomly from among the indices of the 
array; (ii) ordered, in which the successor node is the next 
consecutive node in the array; and (iii) stride of size d, in 
which the successor of each node is d indices away from the 
node, with wrapping around as necessary, and where d is 



some integer constant. We typically run each test hundreds 
of times, and report the average times over all these runs. 

A. Performance as a Function of Various Parameters 

We conduct extensive tests to determine the performance 
of our algorithm as a function of: (i) type of list (random, 
ordered, stride); (ii) number of random splitters (i.e. number 
of sublists). In the rest of this section, we give a summary of 
the results of these tests. 
Performance as a Function of the types of lists 

Typical execution times of our algorithm on ordered, 
random, and stride (with different stride values) lists with 
64M (1M = 220) nodes are shown in Fig. 4. Tests run using 
different list sizes show a very similar pattern. Parameters 
(number of sublists, number of blocks, number of threads per 
block, and number of sublists per thread) are selected to 
yield the best performance for each type. The values of these 
parameters turn out to be the same for all list types. The 
results show a slightly faster performance on ordered lists, 
and show performance on stride lists which ranges from that 
of ordered lists to that of random lists depending on the size 
of the stride. However, overall the difference in execution 
times is at most 10%.  

Given the overall memory architecture of the Tesla, these 
results are not surprising. Note that since parallel accesses to 
contiguous locations can be coalesced, we see a slightly 
improved performance on ordered lists, or stride lists with 
small strides. However memory coalescing is limited once 
parallel threads process different sublists that are relatively 
far apart. An important observation is that when the stride 
value is large enough (> 100), the performance on stride lists 
is almost identical or worse to that on random lists. Given 
this fact, we use stride lists with different stride values 
(typically stride value = 1,001) to report on the performance 
of our algorithm since it is much easier to generate such lists. 
Performance as a Function of the number of sublists 

We focus our attention here in determining the best value 
of s, the number of sublists. This issue is somewhat 
intertwined with the choices of other parameters such as 
number of blocks, number of threads per block, and number 
of sublists per thread. 
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Figure 4.  Performance of our algorithm on different types of lists with 

64M nodes 

Since the head of each sublist is randomly selected, the 
length of each sublist may vary over a large range. To 
achieve the best performance, we must try to balance the 
work load (number of nodes processed) among all the SMs 
and the SPs, which is in particular critical for the most 
computationally demanding Step 3 of our algorithm. In fact, 
the running time of Step 3 is dominated by the execution 
time of the SM that has to process the maximum number of 
nodes. 

For a fixed value of s, it is clear from the randomization 
performed in Step 2 that the more sublists are assigned to 
each thread, the more load balanced the work of the threads 
will be. This is intuitively clear and also follows from the 
proof of the main lemma in [9]. Hence this implies that a 
smaller number of threads will yield better performance. We 
can make the same argument regarding the number of blocks. 
For our Tesla processor, the number of blocks has to be a 
multiple of 30 (including 30 itself) and the number of threads 
per block has to be a multiple of 64. It turns that, for a fixed 
size list, the best performance is achieved when the number 
of blocks is equal to 30 and the number of threads per block 
is set equal to 64. Fixing these two parameters, we now take 
a close look at the execution time of Step 3 and overall 
execution time of the algorithm as a function of the number 
of sublists for a list of size 64M. 

As expected, the execution time of Step 3 decreases as 
the number s of sublists increases. However the overhead to 
create these lists (Step 2) and to combine the partial results 
(Step 4) will eliminate any gain beyond the valued of 
s=61,440, resulting from the combination of 30 blocks, 64 
threads per block, and 32 sublists per thread. It turns out that 
these values are consistent for all lists of sizes larger than 
16M (up to 256M in our tests). Also, note that in the same 
graph we show that the maximum number of nodes handled 
by any SM, which decreases as we increase the number of 
splitters.  
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Figure 5.  Performance of Step 3 and overall algorithm as a function of s 
on 64M stride list (stride = 1001). Upper curve represents the maximum 

load on an SM as a function of s. 



B. Overall Performance of our Algorithm and its 
Scalability 

We now report on the overall performance of our 
algorithm as a function of the list size using stride lists 
whose sizes range from 1M to 256M. Table II shows the 
detailed execution times of each of the steps for different list 
sizes. We have used the number of blocks to be 30 and the 
number of threads per block to be 64 based on the discussion 
above. The number of sublists per thread increases linearly 
with list size until it reaches 32, after which the running time 
spent on dividing and conquering increases faster than the 
time saved in fine tuning the loads among the threads. The 
overall running time scales linearly with the size of the list as 
illustrated by the graph in Fig. 6. 

C. How much Can our Algorithm be Improved? 

We now take a close look at the processing time per node 
achieved by our algorithm as a function of the list size 
ranging from 1M to 256M. Based on our extensive tests, the 
processing cost per node ranges between 4.28ns to 5.33ns, as 
long as the stride value is not extremely large. However, and 
surprisingly, the processing cost per node seems to increase 
significantly when the stride value is extremely large. To 
better understand this unexpected phenomenon and to 
determine whether our cost per node can theoretically be 
improved, we develop an optimized CUDA program whose 
main goal is to only access the device global memory at a 
very fine granularity, and compare its execution time per 
element to that of our prefix sums algorithm. It turns out that 
the performance of our algorithm is very close to the 
optimized global memory testing algorithm, both for 
extremely large strides and for moderate/small strides. We 
provide the details next. 

Let Y  be an array such that each entry consists of 64 bits. 
We develop a trivial CUDA algorithm such that each of its 
threads reads a location of Y (dependent on the thread ID), 
and then successively reads N locations which are at a certain 
stride d from the initial location. Our goal is to develop such 
a CUDA algorithm that results in the best possible 
performance per single access. Let B be the number of 
blocks and Th be the number of threads of our program. We 
conduct tests based on the following 224 possible 
combinations of the values of B, Th, and N:  

B   = { 8, 15, 16, 30, 32, 60, 64, 128 }; 
Th = { 8, 16, 32, 64, 128, 256, 512}; 
N  = { 1024, 2048, 4096, 8192}. 

The ranges above seem to cover all reasonable values to 
achieve the best possible access cost per element. After 
exploring all the combinations, the values achieving the best 
access time per element turn out to be: B = 16, Th = 64 and N 
= 4096. Some other combinations came close but not as good 
as this combination. The typical time per access is 4.044067 
ns for many of the tested sizes for the array Y (varied from 
1M to 256M entries – that is, actual size of array Y varies 
from 8MB to 2GB). 

TABLE II.  EXECUTION TIMES IN SECONDS OF THE DIFFERENT STEPS 
OF OUR ALGORITHM AS A FUNCTION OF THE LIST SIZE. WE USE STRIDE LISTS 

(STRIDE VALUE = 1001) 
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Figure 6.  Scalability to list sizes on Stride lists (stride = 1001) 

We now compare the performance of the global memory 
testing algorithm with that of our prefix sums algorithm 
focusing on stride lists, starting with the case of stride value 
d =1001. A summary of the results is shown in Table III, 
which is also illustrated in the graph shown in Fig. 7. These 
results clearly demonstrate that the performance of our list 
ranking program is very close to the performance achieved 
by the optimized global memory testing program. 

TABLE III.  TIME IN NANOSECONDS PER ELEMENT COMPARISON 
BETWEEN LIST RANKING AND GLOBAL MEMORY TESTING PROGRAM (STRIDE 

= 1001) 

 
 

 
Figure 7.  Time per element comparison between list ranking and global 

memory testing program (Stride = 1001) on the Tesla C1060 



TABLE IV.  PERFORMANCE COMPARISON OF COST PER ELEMENT IN 
NANOSECONDS BETWEEN LIST RANKING AND GLOBAL MEMORY TESTING 

PROGRAM USING EXTREMELY LARGE STRIDES 

 
 

 
Figure 8.  Time per element comparison between list ranking and global 

memory testing program with extremely large strides 

We now consider the case of extremely large stride 
values which are close to the size of lists. In this case, the 
performance degrades substantially when the stride value is 
64M or larger (and hence list sizes are larger than 64M nodes) 
both by the global memory testing program as well as our 
prefix sums algorithm. However the performance per 
element still matches for both algorithms. Table IV and Fig. 
8 illustrate the performance of both algorithms for extremely 
large stride values.  

D. Performance Comparison on Different Machines 

In this section, we compare the performance of our prefix 
sums algorithm on the Tesla C1060 and the Intel 8-core 
Clovertown, as well as, to the performance of other recently 
reported list ranking algorithms on the Cell Processor, the 
MTA-8 (eight 220MHz Cray MTA-2 processors) [7], and 
the NVIDIA GTX280 [8]. Our Intel Clovertown consists of 
four duo-cores, each with 4MB of L2 cache. The overall 
Clovertown architecture is illustrated in Fig. 9. 

 

 
Figure 9.  An overview of the architecture of the Clovertown 

 
Figure 10.  Comparison of different platforms on Random List with 8M 

nodes 

Fig. 10 provides a summary of the overall performance 
of our prefix sums algorithm on the Tesla and Clovertown, 
and the best performance numbers reported on other 
machines for the list ranking problem on random list with 
8M nodes. It is clear that our algorithm achieves the best raw 
performance even when compared to the Cray MTA-8 
machine. The high performance of our algorithm can be 
attributed to the following facts: 
 Our implementation uses thousands of active threads 

to make effective use of the hundreds of processors 
available and to hide memory access latency; 

 Cache sensitive computations are migrated to the CPU 
while the Cell has a small local cache and the MTA-8 
has no local cache; 

 The tradeoff between balanced workload for each 
processor and a small overhead of merging parallel 
results is well addressed and as a result the power of  
the underlying GPU hardware is fully utilized; 

 Shared memory with one clock cycle access time 
among eight SPs from the same SM is used whenever 
applicable to reduce the inter-processor 
synchronization and communication overhead of 
parallelism; on the other hand, processors on either the 
Cell or the MTA-8 are interconnected by networks 
with relatively high latency; 

 Global memory accesses are coalesced to exploit the 
high bandwidth of the GPU whenever possible. 

We now compare the performance of our algorithm to 
that of the scan operation on the Tesla C1060, as well as to 
that of the Clovertown on ordered lists. Clearly we expect 
the Clovertown performance to improve significantly on 
ordered lists because of the L2 cache. On the other hand, the 
scan operation is specifically designed for sequential lists, 
and hence optimized coalescing of global memory accesses 
and optimized access to the shared memory (that is, avoiding 
bank conflicts) are reported in the CUDA implementation of 
[4]. A summary of the results is illustrated in Fig. 11 for the 
case of 64M nodes. Both the scan algorithm and our 
algorithm are run on the Tesla C1060, and the performance 
ratio 7-8 of our algorithm compared to the scan operation 
seems to hold independent of the list size. 



 
Figure 11.  Performance of the scan operation and our list ranking 

algorithm applied to 64M ordered list on the Tesla C1060. The rightmost 
bar represents the performance of our algorithm on the Clovertown using 

the same ordered list. 

V. CONCLUSION 

In this paper, we presented an optimized CUDA 
algorithm for performing prefix sums on linked lists. Such 
computation amounts to highly irregular, fine-grain global 
memory accesses, and hence is usually considered to be 
unsuitable for the stream based, data parallel CUDA 
programming model. The algorithm creates randomized 
sublists that are handled by parallel threads in such a way 
that the merging operation is organized to exploit the CUDA 
architecture. We have conducted extensive tests of our 
algorithm on the Tesla C1060 using different types of linked 
lists of sizes ranging from 1M nodes to 256M nodes. The 
results show scalable performance with the cost of 
processing a node close to the best possible for the Tesla 
processor. A byproduct of our tests is the discovery of 
significant memory performance degradation whenever the 
consecutive locations accessed by a thread become far apart. 
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